
1/24

CS7015 (Deep Learning) : Lecture 22
Autoregressive Models (NADE, MADE)

Mitesh M. Khapra

Department of Computer Science and Engineering
Indian Institute of Technology Madras

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

2/24

Module 22.1: Neural Autoregressive Density Estimator
(NADE)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

3/24

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

∗

+

ε

z

x

Qθ(z|x)

Σµ

Pφ(x|z)

x̂

So far we have seen a few latent variable
generation models such as RBMs and VAEs

Latent variable models make certain independence
assumptions which reduces the number of factors
and in turn the number of parameters in the model

For example, in RBMs we assumed that the visible
variables were independent given the hidden
variables which allowed us to do Block Gibbs
Sampling

Similarly in VAEs we assumed P (x|z) = N (0, I)
which effectively means that given the latent
variables, the x’s are independent of each other
(Since Σ = I)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

4/24

x1 x2 x3 x4

We will now look at Autoregressive (AR)
Models which do not contain any latent
variables

The aim of course is to learn a joint
distribution over x

As usual, for ease of illustration we will
assume x ∈ {0, 1}n

AR models do not make any independence
assumption but use the default factorization
of p(x) given by the chain rule p(x) =
n∏
i=1

p(xi|x<k)

The above factorization contains n factors
and some of these factors contain many
parameters (O(2n) in total)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

5/24

x1 x2 x3 x4

Obviously, it is infeasible to learn such an
exponential number of parameters

AR models work around this by using a
neural network to parameterize these factors
and then learn the parameters of this neural
network

What does this mean? Let us see!

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

6/24

x1 x2 x3 x4

p(x
1
)

p(x
2
|x1)

p(x
3
|x1,

x2
)

p(x
4
|x1,

x2
, x3

)

V3

W.,<k

x1 x2 x3 x4

p(x
1
)

p(x
2
|x1)

p(x
3
|x1,

x2
)

p(x
4
|x1,

x2
, x3

)

V3

W.,<k

At the output layer we want to predict
n conditional probability distributions (each
corresponding to one of the factors in our joint
distribution)

At the input layer we are given the n input
variables

Now the catch is that the nth output should
only be connected to the previous n-1 inputs

In particular, when we are computing
p(x3|x2, x1) the only inputs that we should
consider are x1, x2 because these are the only
variables given to us while computing the
conditional

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

7/24

x1 x2 x3 x4

p(x
1
)

p(x
2
|x1)

p(x
3
|x1,

x2
)

p(x
4
|x1,

x2
, x3

)

h1 h2 h3 h4

V

W

The Neural Autoregressive Density Estimator
(NADE) proposes a simple solution for this

First, for every output unit, we compute a
hidden representation using only the relevant
input units

For example, for the kth output unit, the
hidden representation will be computed using:

hk = σ(W.,<kx<k + b)

where hk ∈ Rd,W ∈ Rd×n,W.,<k are the first
k columns of W

We now compute the output p(xk|xk−1
1) as:

yk = p(xk|xk−1
1) = σ(Vkhk + ck)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

8/24

x1 x2 x3 x4

p(x
1
)

p(x
2
|x1)

p(x
3
|x1,

x2
)

p(x
4
|x1,

x2
, x3

)

h1 h2 h3 h4

V3

W.,<3

Let us look at the equations carefully

hk = σ(W.,<kx<k + b)

yk = p(xk|xk−1
1) = σ(Vkhk + ck)

How many parameters does this model have ?

Note that W ∈ Rd×n and b ∈ Rd×1 are shared
parameters and the same W, b are used for
computing hk for all the n factors (of course
only the relevant columns of W are used for
each k) resulting in nd+ d parameters

In addition, we have Vk ∈ Rd×1 and ck ∈ Rd×1

for each of the n factors resulting in a total of
nd+ n parameters

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

9/24

x1 x2 x3 x4

p(x
1
)

p(x
2
|x1)

p(x
3
|x1,

x2
)

p(x
4
|x1,

x2
, x3

)

h1 h2 h3 h4

V3

W.,<3

There is also an additional parameter h1 ∈ Rd
(similar to the initial state in LSTMs, RNNs)

The total number of parameters in the model
is thus 2nd+ n+ 2d which is linear in n

In other words, the model does not have an
exponential number of parameters which is
typically the case for the default factorization

p(x) =

n∏
i=1

p(xi|x<k)

Why? Because we are sharing the parameters
across the factors

The same W, b contribute to all the factors

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

10/24

x1 x2 x3 x4

p(x
1
)

p(x
2
|x1)

p(x
3
|x1,

x2
)

p(x
4
|x1,

x2
, x3

)

h1 h2 h3 h4

V3

W.,<3

How will you train such a network?
backpropagation: its a neural network after all

What is the loss function that you will choose?

For every output node we know the true
probability distribution

For example, for a given training instance, if
X3 = 1 then the true probability distribution
is given by p(x3 = 1|x2, x1) = 1, p(x3 =
0|x2, x1) = 0 or p = [0, 1]

If the predicted distribution is q = [0.7, 0.3]
then we can just take the cross entropy
between p and q as the loss function

The total loss will be the sum of this cross
entropy loss for all the n output nodes

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

11/24

x1 x2 x3 x4

p(x
1
)

p(x
2
|x1)

p(x
3
|x1,

x2
)

p(x
4
|x1,

x2
, x3

)

h1 h2 h3 h4

V3

W.,<3

Now let’s ask a couple of questions about the
model (assume training is done)

Can the model be used for abstraction? i.e.,
if we give it a test instance x, can the model
give us a hidden abstract representation for x

Well, you will get a sequence of hidden
representations h1, h2, ..., hn but these are not
really the kind of abstract representations
that we are interested in

For example, hn only captures the information
required to reconstruct xn given x1 to xn−1

(compare this with an autoencoder wherein
the hidden representation can reconstruct all
of x1, x2, ..., xn)

These are not latent variable models and are,
by design, not meant for abstraction

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

12/24

x1 x2 x3 x4

p(x
1
)

p(x
2
|x1)

p(x
3
|x1,

x2
)

p(x
4
|x1,

x2
, x3

)

h1 h2 h3 h4

V1

W

Can the model do generation? How?

Well, we first compute p(x1 = 1) as y1 =
σ(V1h1 + c1)

Note that V1, h1, c1 are all parameters of the
model which will be learned during training

We will then sample a value for x1 from the
distribution Bernoulli(y1)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

13/24

x1 x2 x3 x4

p(x
1
)

p(x
2
|x1)

p(x
3
|x1,

x2
)

p(x
4
|x1,

x2
, x3

)

h1 h2 h3 h4

V1 V4

W W.,<4

We will now use the sampled value of x1 and
compute h2 as
h2 = σ(W.,<2x<2 + b)

Using h2 we will compute P (x2 = 1|x1 = x1)
as y2 = σ(V2h2 + c2)

We will then sample a value for x2 from the
distribution Bernoulli(y2)

We will then continue this process till xn
generating the value of one random variable
at a time

If x is an image then this is equivalent to
generating the image one pixel at a time (very
slow)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

14/24

Of course, the model requires a lot of computations because for generating
each pixel we need to compute

hk = σ(W
.,<k

x
<k

+ b)

yk = p(xk|xk−1
1) = σ(Vkhk + ck)

However notice that

W
.,<k+1

x
<k+1

+ b = W
.,<k

x
<k

+ b+W
.,k
x

k

Thus we can reuse some of the computations done for pixel k while predicting
the pixel k + 1 (this can be done even at training time)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

15/24

Things to remember about NADE

Uses the explicit representation of the joint distribution p(x) =
n∏
i=1

p(xi|x<k
)

Each node in the output layer corresponds to one factor in this explicit
representation

Reduces the number of parameters by sharing weights in the neural network

Not designed for abstraction

Generation is slow because the model generates one pixel (or one random
variable) at a time

Possible to speed up the computation by reusing some previous computations

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

16/24

Module 22.2: Masked Autoencoder Density Estimator
(MADE)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

17/24

x1 x2 x3 x4

p(
x 1

)

p(
x 2
|x 1

)

p(
x 3
|x 1
, x

2
)

p(
x 4
|x 1
, x

2
, x

3
)

W1

W2

V

Suppose the input x ∈ {0, 1}n, then the
output layer of an autoencoder also contains
n units

Notice the explicit factorization of the joint
distribution p(x) also contains n factors

p(x) =

n∏
k=1

p(xk|x<k
)

Question: Can we tweak an autoencoder so
that its output units predict the n conditional
distributions instead of reconstructing the n
inputs?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

18/24

x1 x2 x3 x4

p(
x 1

)

p(
x 2
|x 1

)

p(
x 3
|x 1
, x

2
)

p(
x 4
|x 1
, x

2
, x

3
)

W1

W2

V

Note that this is not straightforward because
we need to make sure that the k-th output
unit only depends on the previous k−1 inputs

In a standard autoencoder with fully
connected layers the k-th unit obviously
depends on all the input units

In simple words, there is a path from each of
the input units to each of the output units

We cannot allow this if we want to predict the
conditional distributions p(xk|x<k

) (we need
to ensure that we are only seeing the given
variables x

<k
and nothing else)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

19/24

x1 x2 x3 x4

x̂1 x̂2 x̂3 x̂4

W1

W2

V

Masks

= MV

= MW2

= MW1

x1 x2 x3 x4

1 2 3 4

1 2 1 2 3

1 1 2 1 3

1 2 3 4

p(
x 1

)

p(
x 2
|x 1

)

p(
x 3
|x 1
, x

2
)

p(
x 4
|x 1
, x

2
, x

3
)

We could ensure this by masking
some of the connections in the
network to ensure that yk only
depends on x

<k

We will start by assuming some
ordering on the inputs and just
number them from 1 to n
Now we will randomly assign each
hidden unit a number between 1 to
n-1 which indicates the number of
inputs it will be connected to
For example, if we assign a node the
number 2 then it will be connected to
the first two inputs
We will do a similar assignment for
all the hidden layers

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

20/24

x1 x2 x3 x4

x̂1 x̂2 x̂3 x̂4

W1

W2

V

Masks

= MV

= MW2

= MW1

x1 x2 x3 x4

1 2 3 41 2 3 41 2 3 4

1 2 1 2 31 2 1 2

1 1 2 1 32

1 2 3 4

p(
x 1

)

p(
x 2
|x 1

)

p(
x 3
|x 1
, x

2
)

p(
x 4
|x 1
, x

2
, x

3
)

Let us see what this means
For the first hidden layer this
numbering is clear - it simply
indicates the number of ordered
inputs to which this node will be
connected
Let us now focus on the highlighted
node in the second layer which has
the number 2
This node is only allowed to depend
on inputs x1 and x2 (since it is
numbered 2)
This means that it should be only
connected to those nodes in the
previous hidden layer which have seen
only x1 and x2
In other words it should only have
connections from those nodes, which
have been assigned a number ≤ 2

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

21/24

x1 x2 x3 x4

x̂1 x̂2 x̂3 x̂4

W1

W2

V

Masks

= MV

= MW2

= MW1

x1 x2 x3 x4

1 2 3 4

1 2 1 2 3

1 1 2 11 1 2 1 3

1 2 3 4

p(
x 1

)

p(
x 2
|x 1

)

p(
x 3
|x 1
, x

2
)

p(
x 4
|x 1
, x

2
, x

3
)

Now consider the node labeled 3 in
the output layer
This node is only allowed to see
inputs x1 and x2 because it predicts
p(x3|x2, x1) (and hence the given
variables should only be x1 and x2)
By the same argument that we made
on the previous slide, this means that
it should be only connected to those
nodes in the previous hidden layer
which have seen only x1 and x2
We can implement this by taking
the weight matrices W 1, W 2 and V
and applying an appropriate mask
to them so that the disallowed
connections are dropped

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

22/24

x1 x2 x3 x4

x̂1 x̂2 x̂3 x̂4

W1

W2

V

Masks

= MV

= MW2

= MW1

x1 x2 x3 x4

1 2 3 4

1 2 1 2 3

1 1 2 1 3

1 2 3 4

p(
x 1

)

p(
x 2
|x 1

)

p(
x 3
|x 1
, x

2
)

p(
x 4
|x 1
, x

2
, x

3
)

For example we can apply the following mask at layer 2
W 2

11 W 2
12 W 2

13 W 2
14 W 2

15

W 2
21 W 2

22 W 2
23 W 2

24 W 2
25

W 2
31 W 2

32 W 2
33 W 2

34 W 2
35

W 2
41 W 2

42 W 2
43 W 2

44 W 2
45

W 2
51 W 2

52 W 2
53 W 2

54 W 2
55

�

1 0 1 0 0
1 0 1 0 0
1 1 1 1 0
1 0 1 0 0
1 1 1 1 1

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

23/24

x1 x2 x3 x4

x̂1 x̂2 x̂3 x̂4

W1

W2

V

Masks

= MV

= MW2

= MW1

x1 x2 x3 x4

1 2 3 4

1 2 1 2 3

1 1 2 1 3

1 2 3 4

p(
x 1

)

p(
x 2
|x 1

)

p(
x 3
|x 1
, x

2
)

p(
x 4
|x 1
, x

2
, x

3
)

The objective function for this
network would again be a sum of
cross entropies

The network can be trained using
backpropagation such that the
errors will only be propagated
along the active (unmasked)
connections (similar to what
happens in dropout)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

24/24

Masks

= MV

= MW2

= MW1

x1 x2 x3 x4

1 2 3 41 2 3

1 2 1 2 3

1 1 2 1 3

1 2 3 41 2 3 4

1 1

1 1 1

1 2 1 2

1 1 2 1

1 2 1 2 3

1 1 2 1 3

p(
x 1

)

p(
x 2
|x 1

)

p(
x 3
|x 1
, x

2
)

p(
x 4
|x 1
, x

2
, x

3
)

p(
x 1

)

p(
x 2
|x 1

)

p(
x 3
|x 1
, x

2
)

p(
x 4
|x 1
, x

2
, x

3
)

Similar to NADE, this model is
not designed for abstraction but for
generation

How will you do generation in this
model? Using the same iterative
process that we used with NADE

First sample a value of x1

Now feed this value of x1 to the
network and compute y2

Now sample x2 from Bernoulli (y2)
and repeat the process till you
generate all variables upto xn

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

