
1/71

CS7015 (Deep Learning) : Lecture 19
Using joint distributions for classification and sampling, Latent Variables,
Restricted Boltzmann Machines, Unsupervised Learning, Motivation for

Sampling

Mitesh M. Khapra

Department of Computer Science and Engineering
Indian Institute of Technology Madras

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

2/71

Acknowledgments

Probabilistic Graphical models: Principles and Techniques, Daphne Koller
and Nir Friedman

An Introduction to Restricted Boltzmann Machines, Asja Fischer and
Christian Igel

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

3/71

Module 19.1: Using joint distributions for classification
and sampling

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

4/71

Now that we have some understanding of joint probability distributions and
efficient ways of representing them, let us see some more practical examples where
we can use these joint distributions

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

5/71

M1: An unexpected and necessary masterpiece

M2: Delightfully merged information and comedy

M3: Director’s first true masterpiece

M4: Sci-fi perfection,truly mesmerizing film.

M5: Waste of time and money

M6: Best Lame Historical Movie Ever

Consider a movie critic who writes reviews
for movies

For simplicity let us assume that he always
writes reviews containing a maximum of 5
words

Further, let us assume that there are a total
of 50 words in his vocabulary

Each of the 5 words in his review can be
treated as a random variable which takes one
of the 50 values

Given many such reviews written by the
reviewer we could learn the joint probability
distribution

P (X1, X2, . . . , X5)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

6/71

M1: An unexpected and necessary masterpiece

M2: Delightfully merged information and comedy

M3: Director’s first true masterpiece

M4: Sci-fi perfection,truly mesmerizing film.

M5: Waste of time and money

M6: Best Lame Historical Movie Ever

waste

of

time

and

money

In fact, we can even think of a very simple
factorization for this model

P (X1, X2, . . . , X5) =
∏
P (Xi|Xi−1, Xi−2)

In other words, we are assuming that the i-th
word only depends on the previous 2 words
and not anything before that

Let us consider one such factor P (Xi =
time|Xi−2 = waste,Xi−1 = of)

We can estimate this as

count(waste of time)

count(waste of)

And the two counts mentioned above can be
computed by going over all the reviews

We could similarly compute the
probabilities of all such factors

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

7/71

M7: More realistic than real life

w

P (Xi = w|,

Xi−2 = more,

Xi−1 = realistic)

P (Xi = w|,

Xi−2 = realistic,

Xi−1 = than)

P (Xi = w|

Xi−2 = than,

Xi−1 = real)

. . .

than 0.61 0.01 0.20 . . .

as 0.12 0.10 0.16 . . .

for 0.14 0.09 0.05 . . .

real 0.01 0.50 0.01 . . .

the 0.02 0.12 0.12 . . .

life 0.05 0.11 0.33 . . .

P (M7) = P (X1 = more).P (X2 = realistic|X1 = more).

P (X3 = than|X1 = more,X2 = realistic).

P (X4 = real|X2 = realistic,X3 = than).

P (X5 = life|X3 = than,X4 = real)

= 0.2× 0.25× 0.61× 0.50× 0.33 = 0.005

Okay, so now what can we do
with this joint distribution?

Given a review, classify if this
was written by the reviewer

Generate new reviews which
would look like reviews written
by this reviewer

How would you do this? By
sampling from this distribution!
What does that mean? Let us
see!

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

8/71

w P (X1 = w)
P (X2 = w|,

X1 = the)

P (Xi = w|,

Xi−2 = the,

Xi−1 = movie)

. . .

the 0.62 0.01 0.01 . . .

movie 0.10 0.40 0.01 . . .

amazing 0.01 0.22 0.01 . . .

useless 0.01 0.20 0.03 . . .

was 0.01 0.00 0.60 . . .
...

...
...

... . . .

The movie was really amazing

How does the reviewer start his
reviews (what is the first word that
he chooses)?

We could take the word which has the
highest probability and put it as the
first word in our review

Having selected this what is the most
likely second word that the reviewer
uses?

Having selected the first two words
what is the most likely third word
that the reviewer uses?

and so on...

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

9/71

w P (X1 = w)
P (X2 = w|,

X1 = the)

P (Xi = w|,

Xi−2 = the,

Xi−1 = movie)

. . .

the 0.62 0.01 0.01 . . .

movie 0.10 0.40 0.01 . . .

amazing 0.01 0.22 0.01 . . .

useless 0.01 0.20 0.03 . . .

was 0.01 0.00 0.60 . . .
...

...
...

... . . .

The movie was really amazing

But there is a catch here!

Selecting the most likely word at each
time step will only give us the same
review again and again!

But we would like to generate
different reviews

So instead of taking the max value we
can sample from this distribution

How? Let us see!

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

10/71

w P (X1 = w)
P (X2 = w|,

X1 = the)

P (Xi = w|,

Xi−2 = the,

Xi−1 = movie)

. . .

the 0.62 0.01 0.01 . . .

movie 0.10 0.40 0.01 . . .

amazing 0.01 0.22 0.01 . . .

useless 0.01 0.20 0.03 . . .

was 0.01 0.00 0.60 . . .

is 0.01 0.00 0.30 . . .

masterpiece 0.01 0.11 0.01 . . .

I 0.21 0.00 0.01 . . .

liked 0.01 0.01 0.01 . . .

decent 0.01 0.02 0.01 . . .

Suppose there are 10 words in the
vocabulary
We have computed the probability
distribution P (X1 = word)
P (X1 = the) is the fraction of reviews
having the as the first word
Similarly, we have computed
P (X2 = word2|X1 = word1) and
P (X3 = word3|X1 = word1, X2 = word2)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

11/71

The movie . . .

Index Word

P (Xi = w|,
Xi−2 = the,

Xi−1 = movie)

. . .

0 the 0.01 . . .

1 movie 0.01 . . .

2 amazing 0.01 . . .

3 useless 0.03 . . .

4 was 0.60 . . .

5 is 0.30 . . .

6 masterpiece 0.01 . . .

7 I 0.01 . . .

8 liked 0.01 . . .

9 decent 0.01 . . .

Now consider that we want to generate the 3rd word
in the review given the first 2 words of the review
We can think of the 10 words as forming a 10 sided
dice where each side corresponds to a word
The probability of each side showing up is not uniform
but as per the values given in the table
We can select the next word by rolling this dice and
picking up the word which shows up
You can write a python program to roll such a biased
dice

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

12/71

Generated Reviews

the movie is liked decent

I liked the amazing movie

the movie is masterpiece

the movie I liked useless

Now, at each timestep we do not
pick the most likely word but all
words are possible depending on
their probability (just as rolling
a biased dice or tossing a biased
coin)

Every run will now give us a
different review!

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

13/71

Returning back to our story....

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

14/71

M7: More realistic than real life

w

P (Xi = w|,

Xi−2 = more,

Xi−1 = realistic)

P (Xi = w|,

Xi−2 = realistic,

Xi−1 = than)

P (Xi = w|

Xi−2 = than,

Xi−1 = real)

. . .

than 0.61 0.01 0.20 . . .

as 0.12 0.10 0.16 . . .

for 0.14 0.09 0.05 . . .

real 0.01 0.50 0.01 . . .

the 0.02 0.12 0.12 . . .

life 0.05 0.11 0.33 . . .

P (M7) = P (X1 = more).P (X2 = realistic|X1 = more).

P (X3 = than|X1 = more,X2 = realistic).

P (X4 = real|X2 = realistic,X3 = than).

P (X5 = life|X3 = than,X4 = real)

= 0.2× 0.25× 0.61× 0.50× 0.33 = 0.005

Okay, so now what can we do
with this joint distribution?

Given a review, classify if this
was written by the reviewer

Generate new reviews which
would look like reviews written
by this reviewer

Correct noisy reviews or help in
completing incomplete reviews

argmax
X5

P (X1 = the,X2 = movie,

X3 = was,

X4 = amazingly,

X5 =?)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

15/71

Let us take an example from another domain

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

16/71

Consider images which contain m × n pixels
(say 32× 32)

Each pixel here is a random variable which
can take values from 0 to 255 (colors)

We thus have a total of 32×32 = 1024 random
variables (X1, X2, ..., X1024)

Together these pixels define the image and
different combinations of pixel values lead to
different images

Given many such images we want to learn the
joint distribution P (X1, X2, ..., X1024)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

17/71

We can assume each pixel is dependent only
on its neighbors

In this case we could factorize the distribution
over a Markov network∏

φ(Di)

where Di is a set of variables which
form a maximal clique (basically, groups of
neighboring pixels)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

18/71

Again, what can we do with this joint
distribution?

Given a new image, classify if is indeed a
bedroom

Generate new images which would look like
bedrooms (say, if you are an interior designer)

Correct noisy images or help in completing
incomplete images

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

19/71

Such models which try to estimate the probability P (X) from a large number
of samples are called generative models

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

20/71

Module 19.2: The concept of a latent variable

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

21/71

We now introduce the concept of a latent
variable

Recall that earlier we mentioned that the
neighboring pixels in an image are dependent
on each other

Why is it so? (intuitively, because we expect
them to have the same color, texture, etc.?)

Let us probe this intuition a bit more and try
to formalize it

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

22/71

Suppose we asked a friend to send us a good wallpaper
and he/she thinks a bit about it and sends us this
image

Why are all the pixels in the top portion of the image
blue? (because our friend decided to show us an image
of the sky as opposed to mountains or green fields)

But then why blue why not black? (because our friend
decided to show us an image which depicts daytime as
opposed to night time)

Okay, But why is it not cloudy (gray)?(because our
friend decided to show us an image which depicts a
sunny day)

These decisions made by our friend (sky, sunny,
daytime, etc) are not explicitly known to us (they are
hidden from us)

We only observe the images but what we observe
depends on these latent (hidden) decisions

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

23/71

Latent Variable = daytime

Latent Variable = night

Latent Variable = cloudy

So what exactly are we trying to say here?

We are saying that there are certain
underlying hidden (latent) characteristics
which are determining the pixels and their
interactions

We could think of these as additional (latent)
random variables in our distribution

These are latent because we do not observe
them unlike the pixels which are observable
random variables

The pixels depend on the choice of these latent
variables

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

24/71

More formally we now have visible (observed)
variables or pixels (V = {V1, V2, V3, . . . , V1024})
and hidden variables (H = {H1, H2, ...,Hn})
Can you now think of a Markov network to
represent the joint distribution P (V,H)?
Our original Markov Network suggested that
the pixels were dependent on neighboring pixels
(forming a clique)
But now we could have a better Markov Network
involving these latent variables
This Markov Network suggests that the pixels
(observed variables) are dependent on the latent
variables (which is exactly the intuition that we
were trying to build in the previous slides)
The interactions between the pixels are captured
through the latent variables

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

25/71

Before we move on to more formal definitions and equations, let us probe the
idea of using latent variables a bit more

We will talk about two concepts: abstraction and generation

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

26/71

First let us talk about abstraction

Suppose, we are able to learn the joint
distribution P (V,H)

Using this distribution we can find

P (H|V) =
P (V,H)∑
H P (V,H)

In other words, given an image, we can find
the most likely latent configuration (H = h)
that generated this image (of course, keeping
the computational cost aside for now)

What does this h capture? It captures a latent
representation or abstraction of the image!

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

27/71

In other words, it captures the most
important properties of the image

For example, if you were to describe the
adjacent image you wouldn’t say “I am
looking at an image where pixel 1 is blue, pixel
2 is blue, ..., pixel 1024 is beige”

Instead you would just say “I am looking at
an image of a sunny beach with an ocean in
the background and beige sand”

This is exactly the abstraction captured by
the vector h

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

28/71

Under this abstraction all these images would
look very similar (i.e., they would have very
similar latent configurations h)

Even though in the original feature space
(pixels) there is a significant difference
between these images, in the latent space they
would be very close to each other

This is very similar to the idea behind PCA
and autoencoders

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

29/71

Of course, we still need to figure out a way of
computing P (H|V)

In the case of PCA, learning such latent
representations boiled down to learning the
eigen vectors of X>X (using linear algebra)

In the case of Autoencoders, this boiled down
to learning the parameters of the feedforward
network (Wend,Wdec) (using gradient descent)

We still haven’t seen how to learn the
parameters of P (H,V) (we are far from it but
we will get there soon!)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

30/71

Ok, I am just going to drag this a bit more! (bear with
me)

Remember that in practice we have no clue what these
hidden variables are!

Even in PCA, once we are given the new dimensions
we have no clue what these dimensions actually mean

We cannot interpret them (for example, we cannot
say dimension 1 corresponds to weight, dimension 2
corresponds to height and so on!)

Even here, we just assume there are some latent
variables which capture the essence of the data but
we do not really know what these are (because no one
ever tells us what these are)

Only for illustration purpose we assumed that h1

corresponds to sunny/cloudy, h2 corresponds to beach
and so on

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

31/71

Just to reiterate, remember that while sending
us the wallpaper images our friend never told
us what latent variables he/she considered

Maybe our friend had the following latent
variables in mind: h1 = cheerful, h2 =
romantic, and so on

In fact, it doesn’t really matter what the
interpretation of these latent variable is

All we care about is that they should help us
learn a good abstraction of the data

How? (we will get there eventually)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

32/71

We will now talk about another interesting
concept related to latent variables: generation

Once again, assume that we are able to learn
the joint distribution P (V,H)

Using this distribution we can find

P (V |H) =
P (V,H)∑
V P (V,H)

Why is this interesting?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

33/71

Well, I can now say “Create an image which
is cloudy, has a beach and depicts daytime”

Or given h = [....] find the corresponding V
which maximizes P (V |H)

In other words, I can now generate images
given certain latent variables

The hope is that I should be able to ask the
model to generate very creative images given
some latent configuration (we will come back
to this later)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

34/71

The story ahead...

We have tried to understand the intuition behind latent variables and how
they could potenatially allow us to do abstraction and generation

We will now concretize these intuitions by developings equations (models) and
learning algoritms

And of course, we will tie all this back to neural networks!

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

35/71

For the remainder of this discussion we will assume that all our variables take
only boolean values

Thus, the vector V will be a boolean vector ∈ {0, 1}m (there are a total of 2m

values that V can take)

And the vector H will be a boolean vector ∈ {0, 1}n (there are a total of 2n

values that H can take)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

36/71

Module 19.3: Restricted Boltzmann Machines

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

37/71

v1 v2 · · · vm

h1 h2 · · · hn

We return back to our Markov Network
containing hidden variables and visible
variables

We will get rid of the image and just keep the
hidden and latent variables

We have edges between each pair of (hidden,
visible) variables.

We do not have edges between (hidden,
hidden) and (visible, visible) variables

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

38/71

v1 v2 · · · vm

h1 h2 · · · hn

Earlier, we saw that given such a Markov
network the joint probability distribution can
be written as a product of factors

Can you tell how many factors are there in
this case?

Recall that factors correspond to maximal
cliques

What are the maximal cliques in this case?
every pair of visible and hidden node forms a
clique

How many such cliques do we have? (m× n)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

39/71

v1 v2 · · · vm

h1 h2 · · · hn

So we can write the joint pdf as a product of the
following factors

P (V,H) =
1

Z

∏
i

∏
j

φij(vi, hj)

In fact, we can also add additional factors
corresponding to the nodes and write

P (V,H) =
1

Z

∏
i

∏
j

φij(vi, hj)
∏
i

ψi(vi)
∏
j

ξj(hj)

It is legal to do this (i.e., add factors for ψi(vi)ξj(hj))
as long as we ensure that Z is adjusted in a way that
the resulting quantity is a probability distribution

Z is the partition function and is given by∑
V

∑
H

∏
i

∏
j

φij(vi, hj)
∏
i

ψi(vi)
∏
j

ξj(hj)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

40/71

v1 v2 · · · vm

h1 h2 · · · hn

φ11(v1, h1)

0 0 30
0 1 5
1 0 1
1 1 10

ψ1(v1)

0 10
1 2

Let us understand each of these factors in
more detail

For example, φ11(v1, h1) is a factor which
takes the values of v1 ∈ {0, 1} and h1 ∈ {0, 1}
and returns a value indicating the affinity
between these two variables

The adjoining table shows one such possible
instantiation of the φ11 function

Similarly, ψ1(v1) takes the value of v1 ∈ {0, 1}
and gives us a number which roughly indicates
the possibility of v1 taking on the value 1 or 0

The adjoining table shows one such possible
instantiation of the ψ11 function

A similar interpretation can be made for
ξ1(h1)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

41/71

Just to be sure that we understand this correctly let us take a small example
where |V | = 3 (i.e., V ∈ {0, 1}3) and |H| = 2 (i.e., H ∈ {0, 1}2)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

42/71

v1 v2 v3

h1 h2

φ11(v1, h1) φ12(v1, h2) φ21(v2, h1) φ22(v2, h2) φ31(v3, h1) φ32(v3, h2)

0 0 20 0 0 6 0 0 3 0 0 2 0 0 6 0 0 3
0 1 3 0 1 20 0 1 3 0 1 1 0 1 3 0 1 1
1 0 5 1 0 10 1 0 2 1 0 10 1 0 5 1 0 10
1 1 10 1 1 2 1 1 10 1 1 10 1 1 10 1 1 10

ψ1(v1) ψ2(v2) ψ3(v3) ξ1(h1) ξ2(h2)

0 30 0 100 0 1 0 100 0 10
1 1 1 1 1 100 1 1 1 10

Suppose we are now interested in P (V =<
0, 0, 0 >,H =< 1, 1 >)

We can compute this using the following
function

P (V =< 0, 0, 0 >,H =< 1, 1 >)

=
1

Z
φ11(0, 1)φ12(0, 1)φ21(0, 1)

φ22(0, 1)φ31(0, 1)φ32(0, 1)

ψ1(0)ψ2(0)ψ3(0)ξ1(1)ξ2(1)

and the partition function will be given by

1∑
v1=0

1∑
v2=0

1∑
v3=0

1∑
h1=0

1∑
h2=1

P (V =< v1, v2, v3 >,H =< h1, h2 >)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

43/71

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

How do we learn these clique potentials:
φij(vi, hj), ψi(vi), ξj(hj)?

Whenever we want to learn something what
do we introduce? (parameters)

So we will introduce a parametric form for
these clique potentials and then learn these
parameters

The specific parametric form chosen by RBMs
is

φij(vi, hj) = ewijvihj

ψi(vi) = ebivi

ξj(hj) = ecjhj

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

44/71

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

With this parametric form, let us see what the
joint distribution looks like

P (V,H) =
1

Z

∏
i

∏
j

φij(vi, hj)
∏
i

ψi(vi)
∏
j

ξj(hj)

=
1

Z

∏
i

∏
j

ewijvihj
∏
i

ebivi
∏
j

ecjhj

=
1

Z
e
∑

i

∑
j wijvihje

∑
i bivie

∑
j cjhj

=
1

Z
e
∑

i

∑
j wijvihj+

∑
i bivi+

∑
j cjhj

=
1

Z
e−E(V,H) where,

E(V,H) = −
∑
i

∑
j

wijvihj −
∑
i

bivi −
∑
j

cjhj

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

45/71

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

E(V,H) = −
∑
i

∑
j

wijvihj −
∑
i

bivi −
∑
j

cjhj

Because of the above form, we refer to these
networks as (restricted) Boltzmann machines

The term comes from statistical mechanics
where the distribution of particles in a system
over various possible states is given by

F (state) ∝ e−
E
kt

which is called the Boltzmann distribution or
the Gibbs distribution

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

46/71

Module 19.4: RBMs as Stochastic Neural Networks

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

47/71

But what is the connection between this and deep neural networks?

We will get to it over the next few slides!

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

48/71

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

We will start by deriving a formula for P (V |H) and
P (H|V)

In particular, let us take the l-th visible unit and derive
a formula for P (vl = 1|H)

We will first define V−l as the state of all the visible
units except the l-th unit

We now define the following quantities

αl(H) = −
n∑

i=1

wilhi − bl

β(V−l, H) = −
n∑

i=1

m∑
j=1,j 6=l

wijhivj −
m∑

j=1,j 6=l

bivi −
n∑

i=1

cihi

Notice that

E(V,H) = vlα(H) + β(V−l, H)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

49/71

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

We can now write P (vl = 1|H) as

p(vl = 1|H) = P (vl = 1|V−l, H)

=
p(vl = 1, V−l, H)

p(V−l, H)

=
e−E(vl=1,V−l,H)

e−E(vl=1,V−l,H) + e−E(vl=0,V−l,H)

=
e−β(V−l,H)−1·αl(H)

e−β(V−l,H)−1·αl(H) + e−β(V−l,H)−0·αl(H)

=
e−β(V−l,H) · e−αl(H)

e−β(V−l,H) · e−αl(H) + e−β(V−l,H)

=
e−αl(H)

e−αl(H) + 1
=

1

1 + eαl(H)

= σ(−αl(H)) = σ(

n∑
i=1

wilhi + bl)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

50/71

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

Okay, so we arrived at

p(vl = 1|H) = σ(

n∑
i=1

wilhi + bl)

Similarly, we can show that

p(hl = 1|V) = σ(

m∑
i=1

wilvi + cl)

The RBM can thus be interpreted as a stochastic
neural network, where the nodes and edges correspond
to neurons and synaptic connections, respectively.

The conditional probability of a single (hidden or
visible) variable being 1 can be interpreted as the firing
rate of a (stochastic) neuron with sigmoid activation
function

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

51/71

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

Given this neural network view of RBMs, can
you say something about what h is trying to
learn?

It is learning an abstract representation of V

This looks similar to autoencoders but how do
we train such an RBM? What is the objective
function?

We will see this in the next lecture!

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

52/71

Module 19.5: Unsupervised Learning with RBMs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

53/71

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

So far, we have mainly dealt with supervised
learning where we are given {xi, yi}ni=1 for
training

In other words, for every training example we
are given a label (or class) associated with it

Our job was then to learn a model which
predicts ŷ such that the difference between y
and ŷ is minimized

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

54/71

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

But in the case of RBMs, our training data
only contains x (for example, images)

There is no explicit label (y) associated with
the input

Of course, in addition to x we have the latent
variable h but we don’t know what these h’s
are

We are interested in learning P (x, h) which we
have parameterized as

P (V,H) =
1

Z
e−(−

∑
i

∑
j wijvihj−

∑
i bivi−

∑
j cjhj)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

55/71

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

What is the objective function that we should use?

First note that if we have learnt P (x, h) we can
compute P (x)

What would we want P (X = x) to be for any x
belonging to our training data?

We would want it to be high

So now can you think of an objective function

maximize
N∏
i=1

P (X = xi)

Or, log-likelihood

ln L (θ) = ln

l∏
i=1

p(xi|θ) =

l∑
i=1

ln p(xi|θ)

where θ are the parameters

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

56/71

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

Okay so we have the objective function now!
What next?

We need a learning algorithm

We can just use gradient descent if we are able
to compute the gradient of the loss function
w.r.t. the parameters

Let us see if we can do that

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

57/71

Module 19.6: Computing the gradient of the log
likelihood

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

58/71

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

We will just consider the loss for a single training
example

ln L (θ) = ln p(V |θ) = ln
1

Z

∑
H

e−E(V,H)

= ln
∑
H

e−E(V,H) − ln
∑
V,H

e−E(V,H)

∂ ln L (θ)

∂θ
=

∂

∂θ

(
ln
∑
H

e−E(V,H) − ln
∑
V,H

e−E(V,H)

)

= − 1∑
H e−E(V,H)

∑
H

e−E(V,H) ∂E(V,H)

∂θ

+
1∑

V,H e−E(V,H)

∑
V,H

e−E(V,H) ∂E(V,H)

∂θ

= −
∑
H

e−E(V,H)∑
H e−E(V,H)

∂E(V,H)

∂θ

+
∑
V,H

e−E(V,H)∑
V,H e−E(V,H)

∂E(V,H)

∂θ

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

59/71

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

Now,

e−E(V,H)∑
V,H e−E(V,H)

= p(V,H)

e−E(V,H)∑
H e−E(V,H)

=
1
Z
e−E(V,H)

1
Z

∑
H e−E(V,H)

=
p(V,H)

p(V)
= p(H|V)

∂ ln L (θ)

∂θ
= −

∑
H

e−E(V,H)∑
H e−E(V,H)

∂E(V,H)

∂θ

+
∑
V,H

e−E(V,H)∑
V,H e−E(V,H)

∂E(V,H)

∂θ

= −
∑
H

p(H|V)
∂E(V,H)

∂θ
+
∑
V,H

p(V,H)
∂E(V,H)

∂θ

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

60/71

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

Okay, so we have,

∂ ln L (θ)

∂θ
= −

∑
H

p(H|V)
∂E(V,H)

∂θ

+
∑
V,H

p(V,H)
∂E(V,H)

∂θ

Remember that θ is a collection of all the
parameters in our model, i.e., Wij , bi, cj∀i ∈
{1, . . . ,m} and ∀j ∈ {1, . . . , n}
We will follow our usual recipe of computing
the partial derivative w.r.t. one weight wij
and then generalize to the gradient w.r.t. the
entire weight matrix W

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

61/71

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

∂L (θ)

∂wij

= −
∑
H

p(H|V)
∂E(V,H)

∂wij
+
∑
V,H

p(V,H)
∂E(V,H)

∂wij

=
∑
H

p(H|V)hivj −
∑
V,H

p(V,H)hivj

= Ep(H|V)[vihj]− Ep(V,H)[vihj]

We can write the above as a sum of two
expectations

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

62/71

∂L (θ)

∂wij
= Ep(H|V)[vihj]− Ep(V,H)[vihj]

How do we compute these expectations?

The first summation can actually be
simplified (we will come back and simplify it
later)

However, the second summation contains an
exponential number of terms and hence
intractable in practice

So how do we deal with this ?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

63/71

Module 19.7: Motivation for Sampling

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

64/71

∂L (θ)

∂wij
= Ep(H|V)[vihj]− Ep(V,H)[vihj]

The trick is to approximate the sum by using
a few samples instead of an exponential
number of samples

We will try to understand this with the help
of an analogy

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

65/71

Suppose you live in a city which
has a population of 10M and you
want to compute the average
weight of this population

You can think of X as a random
variable which denotes a person

The value assigned to this
random variable can be any
person from your population

For each person you have an
associated value denoted by
weight(X)

You are then interested in
computing the expected value of
weight(X) as shown on the RHS

E[weight(X)] =
∑
(x∈P)

p(x)weight(x)

Of course, it is going to be hard to get the
weights of every person in the population
and hence in practice we approximate the
above sum by sampling only few subjects
from the population (say 10000)

E[weight(X)] ≈
∑

x∈P [:10000][p(x)weight(x)]∑
x∈P [:10000] p(x)

Further, you assume that P (X) = 1
N = 1

10K ,
i.e., every person in your population is
equally likely

E[weight(X)] ≈
∑

x∈Persons[:10000][weight(x)]

104

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

66/71

E[X] =
∑
(x∈P)

xp(x)

This looks easy, why can’t we do the same
for our task ?

Why can’t we simply approximate the sum
by using some samples?

What does that mean? It means that instead
of considering all possible values of
{v, h} ∈ 2m+n let us just consider some
samples from this population

Analogy: Earlier we had 10M samples in the
population from which we drew 10K
samples, now we have 2m+n samples in the
population from which we need to draw a
reasonable number of samples

Why is this not straightforward? Let us see!

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

67/71

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

For simplicity, first let us just focus on the
visible variables (V ∈ 2m) and let us see
what it means to draw samples from P (V)

Well, we know that V = v1, v2, . . . , vm where
each vi ∈ {0, 1}
Suppose we decide to approximate the sum
by 10K samples instead of the full 2m

samples

It is easy to create these samples by
assigning values to each vi

For example,
V = 11111 . . . 11111, V = 00000 . . . 0000, V =
00110011 . . . 00110011, . . . V = 0101 . . . 0101
are all samples from this population

So which samples do we consider ?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

68/71

Likely

Unlikely

Well, that’s where the catch is!

Unlike, our population analogy, here we
cannot assume that every sample is equally
likely

Why? (Hint: consider the case that visible
variables correspond to pixels from natural
images)

Clearly some images are more likely than the
others!

Hence, we cannot assume that all samples
from the population (V ∈ 2m) are equally
likely

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

69/71

Uniform distribution

Multimodal distribution

Let us see this in more detail

In our analogy, every person was equally
likely so we could just sample people
uniformly randomly

However, now if we sample people uniformly
randomly then we will not get the true
picture of the expected value

We need to draw more samples from the high
probability region and fewer samples from
the low probability region

In other words each sample needs to be
drawn in proportion to its probability and
not uniformly

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

70/71

∂L (θ|V)

∂wij
= Ep(H|V)[vihj]− Ep(V,H)[vihj]

Z =
∑
V

∑
H

(∏
i

∏
j

φij(vi, hj)

∏
i

ψi(vi)
∏
j

ξj(hj)
)

That is where the problem lies!

To draw a sample (V,H), we need to know
its probability P (V,H)

And of course, we also need this P (V,H)to
compute the expectation

But, unfortunately computing P (V,H) is
intractable because of the partition function
Z

Hence, approximating the summation by
using a few samples is not straightforward!
(or rather drawing a few samples from the
distribution is hard!)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

71/71

The story so far

Conclusion: Okay, I get it that drawing samples from this distribution P is
hard.

Question: Is it possible to draw samples from an easier distribution (say, Q) as
long as I am sure that if I keep drawing samples from Q eventually my
samples will start looking as if they were drawn from P !

Answer: Well if you can actually prove this then why not? (and that’s what
we do in Gibbs Sampling)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19

