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Module 17.0: Recap of Probability Theory

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 17



3/86

We will start with a quick recap of some basic concepts from probability
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A1

A2

A3

A4 A5

Ω

Axioms of Probability

For any event A,

P (A) ≥ 0

If A1, A2, A3, ...., An are disjoint
events (i.e., Ai ∩ Aj = φ ∀i 6= j)
then

P (∪Ai) =
∑
i

P (Ai)

If Ω is the universal set containing all
events then

P (Ω) = 1
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A

B

C

Ω

Ω

Grades

A

B

CG

Random Variable (intuition)

Suppose a student can get one of 3
possible grades in a course: A,B,C

One way of interpreting this is that
there are 3 possible events here

Another way of looking at this is
there is a random variable G which
each student to one of the 3 possible
values

And we are interested in P (G = g)
where g ∈ {A,B,C}
Of course, both interpretations are
conceptually equivalent
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Ω

Grades

A

B

CG

Height

Short

Tall

H

Age

Young

AdultA

Random Variable (intuition)

But the second one (using random
variables) is more compact

Specially, when there are multiple
attributes associated with a student
(outcome) - grade, height, age, etc.

We could have one random variable
corresponding to each attribute

And then ask for outcomes (or stu-
dents) where Grade = g, Height =
h, Age = a and so on
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Ω

Grades

A

B

CG

Height

Short

Tall

H

Age

Young

AdultA

Random Variable (formal)

A random variable is a function
which maps each outcome in Ω to a
value

In the previous example, G (or fgrade)
maps each student in Ω to a value: A,
B or C

The event Grade = A is a shorthand
for the event {ω ∈ Ω : fGrade = A}
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Ω

Grades

A

B

CG

Height

120cm
.
.
.

200cm

H

Weight

45kg

.

.

.

120kgA

Random Variable (continuous v/s
discrete)

A random variable can either take
continuous values (for example,
weight, height)

Or discrete values (for example,
grade, nationality)

For this discussion we will mainly fo-
cus on discrete random variables
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G P (G =
g)

A 0.1
B 0.2
C 0.7

Marginal Distribution

What do we mean by marginal dis-
tribution over a random variable ?

Consider our random variable G for
grades

Specifying the marginal distribution
over G means specifying

P (G = g) ∀g ∈ A,B,C

We denote this marginal distribution
compactly by P (G)
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G I P (G = g, I = i)

A High 0.3
A Low 0.1
B High 0.15
B Low 0.15
C High 0.1
C Low 0.2

Joint Distribution

Consider two random variable G (grade) and
I (intellegence ∈ {High, Low})
The joint distribution over these two random
variables assigns probabilities to all events in-
volving these two random variables

P (G = g, I = i) ∀(g, i) ∈ {A,B,C} × {H,L}

We denote this joint distribution compactly
by P (G, I)
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G P (G|I = H)

A 0.6
B 0.3
C 0.1

G P (G|I = L)

A 0.3
B 0.4
C 0.3

Conditional Distribution

Consider two random variable G (grade) and I (intel-
legence)

Suppose we are given the value of I (say, I = H) then
the conditional distribution P (G|I) is defined as

P (G = g|I = H) =
P (G = g, I = H)

P (I = H)
∀g ∈ {A,B,C}

More compactly defined as

P (G|I) =
P (G, I)

P (I)

or P (G, I)︸ ︷︷ ︸
joint

= P (G|I)︸ ︷︷ ︸
conditional

∗ P (I)︸ ︷︷ ︸
marginal
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X1 . . . Xn P (X1, X2, . . . , Xn)

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . . ∑
= 1

Joint Distribution (n random variables)

The joint distribution of n random variables
assigns probabilities to all events involving the
n random variables,

In other words it assigns

P (X1 = x1, X2 = x2, ..., Xn = xn)

for all possible values that variable Xi can take

If each random variableXi can take two values
then the joint distribution will assign probab-
ilities to the 2n possible events
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X1 . . . Xn P (X1, X2, . . . , Xn)

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

Joint Distribution (n random variables)

The joint distribution over two random vari-
ables X1 and X2 can be written as,

P (X1, X2) = P (X2|X1)P (X1) = P (X1|X2)P (X2)

Similarly for n random variables

P (X1, X2, ..., Xn)

= P (X2, ..., Xn|X1)P (X1)

= P (X3, ..., Xn|X1, X2)P (X2|X1)P (X1)

= P (X4, ..., Xn|X1, X2, X3)P (X3|X2, X1)

P (X2|X1)P (X1)

= P (X1)

n∏
i=2

P (Xi|Xi−1
1 ) (chain rule)
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A B P (A = a,B = b)

High High 0.3
High Low 0.25
Low High 0.35
Low Low 0.1

A P (A = a)

High 0.55
Low 0.45

B P (B = a)

High 0.65
Low 0.35

From Joint Distributions to Marginal
Distributions

Suppose we are given a joint distribtion over
two random variables A, B

The marginal distributions of A and B can be
computed as

P (A = a) =
∑
∀b
P (A = a,B = b)

P (B = b) =
∑
∀a

P (A = a,B = b)

More compactly written as

P (A) =
∑
B

P (A,B)

P (B) =
∑
A

P (A,B)
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A B P (A = a,B = b)

High High 0.3
High Low 0.25
Low High 0.35
Low Low 0.1

A P (A = a)

High 0.55
Low 0.45

B P (B = a)

High 0.65
Low 0.35

What if there are n random variables ?

Suppose we are given a joint distribtion over
n random variables X1, X2, ..., Xn

The marginal distributions over X1 can be
computed as

P (X1 = x1)

=
∑

∀x2,x3,...,xn

P (X1 = x1, X2 = x2, ..., Xn = xn)

More compactly written as

P (X1) =
∑

X2,X3,...,Xn

P (X1, X2, ..., Xn)
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Recall that by Chain Rule of
Probability

P (X,Y ) = P (X)P (Y |X)

However, if X and Y are in-
dependent, then

P (X,Y ) = P (X)P (Y )

Conditional Independence

Two random variables X and Y are said to be
independent if

P (X|Y ) = P (X)

We denote this as X ⊥⊥ Y
In other words, knowing the value of Y does
not change our belief about X

We would expect Grade to be dependent on
Intelligence but independent of Weight
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Okay, we are now ready to move on to Bayesian Networks or Directed Graphical
Models
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Module 17.1: Why are we interested in Joint
Distributions
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Y

Oil

Salinity

X1

Pressure

X2

Depth

X3

Biodiversity

X4

Temperature

X5

Density

X6

P (Y,X1, X2, X3, X4, X5, X6)

In many real world applications, we
have to deal with a large number of
random variables

For example, an oil company may be
interested in computing the probabil-
ity of finding oil at a particular loca-
tion

This may depend on various (ran-
dom) variables

The company is interested in knowing
the joint distribution

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 17



20/86

Y

Oil

Salinity

X1

Pressure

X2

Depth

X3

Biodiversity

X4

Temperature

X5

Density

X6

P (Y,X1, X2, X3, X4, X5, X6)

But why joint distribution?

Aren’t we just interested in
P (Y |X1, X2, ..., Xn)?

Well, if we know the joint distribu-
tion, we can find answers to a bunch
of interesting questions

Let us see some such questions of in-
terest
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Y

Oil

Salinity

X1

Pressure

X2

Depth

X3

Biodiversity

X4

Temperature

X5

Density

X6

P (Y,X1, X2, X3, X4, X5, X6)

We can find the conditional distribution

P (Y |X1, ..., Xn) =
P (Y,X1, ..., Xn)∑

X1,...,Xn
P (Y,X1, ..., Xn)

We can find the marginal distribution,

P (Y ) =
∑

X1,...,Xn

P (Y,X1, X2, ..., Xn)

We can find the conditional independencies,

P (Y,X1) = P (Y )P (X1)
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Module 17.2: How do we represent a joint distribution
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Y (yes/no)

Oil

Salinity

X1 (high/low)

Pressure

X2 (high/low)

Depth

X3 (deep/shallow)

Biodiversity

X4 (high/low)

Temperature

X5 (high/low)

Density

X6 (high/low)

P (Y,X1, X2, X3, X4, X5, X6)

Let us return to the case of n random
variables

For simplicity assume each of these
variables can take binary values

To specify the joint distribution, we
need to specify 2n − 1 values. Why
not (2n)?

If we specify these 2n − 1 values, we
have an explicit representation for the
joint distribution
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X1 X2 X3 X4 ... Xn P

0 0 0 0 ... 0 0.01
1 0 0 0 ... 0 0.03
0 1 0 0 ... 0 0.05
1 1 0 0 ... 0 0.1

...

...

...
1 1 1 1 ... 1 0.002

(Once the first 2n − 1 values are specified
the last value is deterministic as the
values need to sum to 1)

Challenges with explicit
representation

Computational: Expensive to ma-
nipulate and too large to to store

Cognitive: Impossible to acquire so
many numbers from a human

Statistical: Need huge amounts of
data to learn the parameters
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Module 17.3: Can we represent the joint distribution
more compactly?
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I S P (I, S)

0 0 0.665
0 1 0.035
1 0 0.06
1 1 0.24

This distribution has (22 − 1 = 3)
parameters.

Alternatively, the table has 4 rows
but the last row is deterministic
given the first 3 rows (or parameters)

Consider the case of two random vari-
ables, Intelligence (I) and SAT Scores
(S)

Assume that both are binary and take
values from High(1), Low(0)

Here is one way of specifying the joint
distribution

Of course, there are many such joint
distributions possible
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i = 0 i = 1

P (I) 0.7 0.3
no.of parameters=1

s = 0 s = 1

P (S|I = 0) 0.95 0.05

P (S|I = 1) 0.2 0.8
no.of parameters=2

What! So from 3 parameters we have
gone to 6 parameters?

Well, not really! (remember sum for
each row in the above table has to be
1)

The number of parameters is still 3

Note that there is a natural ordering
in these two random variables

The SAT Score (S) presumably de-
pends upon the Intelligence (I). An
alternate and even more natural way
to represent the same distribution is

P (I, S) = P (I)× P (S|I)

Instead of specifying the 4 entries in
P (I, S), we can specify 2 entries for
P (I) and 4 entries for P (S|I)
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i=0 i=1

P (I) 0.7 0.3
no.of parameters=1

s=0 s=1

P (S|I = 0) 0.95 0.05

P (S|I = 1) 0.2 0.8
no.of parameters=2

What have we achieved so far?

We were not able to reduce the num-
ber of parameters

But, we have a more natural way of
representing the distribution

This is known as conditional para-
meterization

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 17



29/86

Intelligence

GradeSAT

Now consider a third random variable
Grade (G)

Notice that none of these 3 variables
are independent of each other

Grade and SAT Score are clearly cor-
related with Intelligence

Grade and SAT Score are also correl-
ated because we would expect

P (G = 1|S = 1) > P (G = 1|S = 0)
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Intelligence

GradeSAT

However, it is possible that the dis-
tribution satisfies a conditional inde-
pendence

If we know that I = H, then it is
possible that S = H does not give any
extra information for determining G

In other words, if we know that the
student is intelligent we can make in-
ferences about his grade without even
knowing the SAT score

Formally, we assume that (S ⊥ G|I)

Note that this is just an assumption

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 17



31/86

Intelligence

GradeSAT

We could argue that in many cases
S 6⊥ G|I

For example, a student might be in-
telligent, but we also have to factor in
his/her ability to write in time bound
exams

In which case S and G are not in-
dependent given I (because the SAT
score tells us about the ability to
write time bound exams)

But, for this discussion, we will as-
sume S ⊥ G|I
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Question

Now let’s see the implication of this assumption

Does it simplify things in any way?
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i = 0 i = 1

P (I) 0.7 0.3
no.of parameters=1

s=0 s=1

P (S|I = 0) 0.95 0.05

P (S|I = 1) 0.2 0.8
no.of parameters=2

g=A g=B g=C

P(G—I=0) 0.2 0.34 0.46

P(G—I=1) 0.74 0.17 0.09
no.of parameters=4

total no.of parameters=7

How many parameters do we need to
specify P (I,G, S)?

(2× 2× 3− 1 = 11)

What if we use conditional paramet-
erization by following the chain rule?

P (I,G, S) = P (S,G|I)P (I)

= P (S|G, I)P (G|I)P (I)

= P (S|I)P (G|I)P (I)

since (S ⊥ G|I)

We need the following distributions to
fully specify the joint distribution
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i = 0 i = 1

P (I) 0.7 0.3
no.of parameters=1

s=0 s=1

P (S|I = 0) 0.95 0.05

P (S|I = 1) 0.2 0.8
no.of parameters=2

g=A g=B g=C

P(G—I=0) 0.2 0.34 0.46

P(G—I=1) 0.74 0.17 0.09
no.of parameters=4

total no.of parameters=7

The alternate parameterization is
more natural than that of the joint
distribution

The alternate parameterization is
more compact than that of the joint
distribution

The alternate parameterization is
more modular. (When we added G,
we could just reuse the tables for P (I)
and P (S|I))
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Module 17.4: Can we use a graph to represent a joint
distribution?
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C

X1 X2
. . .X3 Xn

This is called the Naive Bayes model

It makes the Naive assumption that
nC2 pairs are independent given C

Suppose we have n random variables,
all of which are independent given an-
other random variable C

The joint distribution factorizes as,

P (C,X1, ..., Xn) = P (C)P (X1|C)

P (X2|X1, C)

P (X3|X2, X1, C)...

= P (C)

n∏
i=1

P (Xi|C)

since Xi ⊥ Xj |C
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I

Intelligence

GGrade

I

Intelligence

G

Grade

S

SAT

C

X1 X2 . . . Xn

Bayesian networks build on the intu-
itions that we developed for the Naive
Bayes model

But they are not restricted to strong
(naive) independence assumptions

We use graphs to represent the joint
distribution

Nodes: Random Variables

Edges: Indicate dependence
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D

Difficulty

I

Intelligence

GGrade S

SAT

LLetter

Let’s revisit the student example

We will introduce a few more random
variables and independence assump-
tions

The grade now depends on student’s
Intelligence & exam’s Difficulty level

The SAT score depends on Intelli-
gence

The recommendation Letter from the
course instructor depends on the
Grade
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D

Difficulty

I

Intelligence

GGrade S

SAT

LLetter

The Bayesian network contains a
node for each random variable

The edges denote the dependencies
between the random variables

Each variable depends directly on its
parents in the network
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D

Difficulty

I

Intelligence

GGrade S

SAT

LLetter

The Bayesian network can be viewed
as a data structure

It provides a skeleton for represent-
ing a joint distribution compactly by
factorization

Let us see what this means
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D

Difficulty

I Intelligence

G Grade S SAT

LLetter

d0 d1

0.6 0.4

i0 i1

0.7 0.3

g1 g2 g3

i0,d0 0.3 0.4 0.3

i0,d1 0.05 0.25 0.7

i1,d0 0.9 0.08 0.02

i1,d1 0.5 0.3 0.2 s0 s1

i0 0.95 0.05

i1 0.2 0.8

l0 l1

g1 0.1 0.9

g2 0.4 0.6

g3 0.99 0.01

Each node is associated with a local
probability model

Local, because it represents the de-
pendencies of each variable on its par-
ents

There are 5 such local probability
models associated with the graph

Each variable (in general) is associ-
ated with a conditional probability
distribution (conditional on its par-
ents)
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D

Difficulty

I Intelligence

G Grade S SAT

LLetter

d0 d1

0.6 0.4

i0 i1

0.7 0.3

g1 g2 g3

i0,d0 0.3 0.4 0.3

i0,d1 0.05 0.25 0.7

i1,d0 0.9 0.08 0.02

i1,d1 0.5 0.3 0.2 s0 s1

i0 0.95 0.05

i1 0.2 0.8

l0 l1

g1 0.1 0.9

g2 0.4 0.6

g3 0.99 0.01

The graph gives us a natural factor-
ization for the joint distribution

In this case,

P (I,D,G, S, L) = P (I)P (D)

P (G|I,D)P (S|I)P (L|G)

For example,

P (I = 1, D = 0, G = B,S = 1, L = 0)

= 0.3× 0.6× 0.08× 0.8× 0.4

The graph structure (nodes, edges)
along with the conditional probabil-
ity distribution is called a Bayesian
Network
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Module 17.5: Different types of reasoning in a Bayesian
network
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New Notations

We will denote P (I = 0) by P (i0)

In general, we will denote P (I = 0, D = 1, G = B,S = 1, L = 0) by
P (i0, d1, gb, s1, l0)
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D

Difficulty

I Intelligence

G Grade S SAT

LLetter

d0 d1

0.6 0.4

i0 i1

0.7 0.3

g1 g2 g3

i0,d0 0.3 0.4 0.3

i0,d1 0.05 0.25 0.7

i1,d0 0.9 0.08 0.02

i1,d1 0.5 0.3 0.2 s0 s1

i0 0.95 0.05

i1 0.2 0.8

l0 l1

g1 0.1 0.9

g2 0.4 0.6

g3 0.99 0.01

P (l1) =
∑

I,D,G,S

P (I,D,G, S, l1)

=
∑
Iε(0,1)

∑
Dε(0,1)

∑
Gε(A,B,C)

∑
Sε(0,1)

P (I,D,G, S, l1)

= 50.2%

Causal Reasoning

Here, we try to predict downstream
effects of various factors

Let us consider an example

What is the probability that a stu-
dent will get a good recommendation
letter, P (l1)?

P (l1) =
∑
Iε(0,1)

∑
Dε(0,1)

∑
Sε(0,1)

∑
Gε(A,B,C)

P (I,D,G, S, l1)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 17



46/86

P (l1) =
∑
Iε(0,1)

∑
Dε(0,1)

∑
Sε(0,1)

∑
Gε(A,B,C)

P (I,D,G, S, l1)

=
∑
Iε(0,1)

P (I)
∑

Dε(0,1)

P (D|I)
∑
Sε(0,1)

P (S|I,D)
∑

Gε(A,B,C)

P (G|I,D, S).P (l1|G, I,D, S)

=
∑
Iε(0,1)

P (I)
∑

Dε(0,1)

P (D)
∑
Sε(0,1)

P (S|I)
∑

Gε(A,B,C)

P (G|I,D).P (l1|G)

D I

G S

L
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P (l1) =
∑
Iε(0,1)

P (I)
∑

Dε(0,1)

P (D)
∑

Sε(0,1)

P (S|I)
∑

Gε(A,B,C)

P (G|I,D)P (l1|G)

=
∑
Iε(0,1)

P (I)
∑

Dε(0,1)

P (D)
∑

Sε(0,1)

P (S|I)0.9(P (g1|I,D)) + 0.6(P (g2|I,D)) + 0.01(P (g3|I,D))

Similarly using the other tables, we can evaluate this equation

P (l1) = 0.502

D I

G S

L

l0 l1

g1 0.1 0.9

g2 0.4 0.6

g3 0.99 0.01

g1 g2 g3

i0,d0 0.3 0.4 0.3

i0,d1 0.05 0.25 0.7

i1,d0 0.9 0.08 0.02

i1,d1 0.5 0.3 0.2
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D

Difficulty

I Intelligence

G Grade S SAT

LLetter

d0 d1

0.6 0.4

i0 i1

0.7 0.3

g1 g2 g3

i0,d0 0.3 0.4 0.3

i0,d1 0.05 0.25 0.7

i1,d0 0.9 0.08 0.02

i1,d1 0.5 0.3 0.2 s0 s1

i0 0.95 0.05

i1 0.2 0.8

l0 l1

g1 0.1 0.9

g2 0.4 0.6

g3 0.99 0.01

Causal Reasoning

Now what if we start adding inform-
ation about the factors that could in-
fluence l1

What if someone reveals that the stu-
dent is not intelligent?

Intelligence will affect the score and
hence the grade
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P (l1|i0) = P (l1, i0)

P (i0)

P (l1, i0) =
∑

D∈{0,1}

∑
S∈{0,1}

∑
G∈{A,B,C}

P (i0, D,G, S, l1)

=
∑

D∈{0,1}

P (D)
∑

S∈{0,1}

P (S|i0)
∑

G∈{A,B,C}

P (G|D, i0)P (l1|G)

=
∑

D∈{0,1}

P (D)
∑

S∈{0,1}

P (S|i0)
∑

G∈{A,B,C}

0.9P (g1|D, i0) + 0.6P (g2|D, i0) + 0.01P (g3|D, i0)

P (l1|i0) = 0.389

D I

G S

L

l0 l1

g1 0.1 0.9

g2 0.4 0.6

g3 0.99 0.01

g1 g2 g3

i0,d0 0.3 0.4 0.3

i0,d1 0.05 0.25 0.7

i1,d0 0.9 0.08 0.02

i1,d1 0.5 0.3 0.2
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D

Difficulty

I Intelligence

G Grade S SAT

LLetter

d0 d1

0.6 0.4

i0 i1

0.7 0.3

g1 g2 g3

i0,d0 0.3 0.4 0.3

i0,d1 0.05 0.25 0.7

i1,d0 0.9 0.08 0.02

i1,d1 0.5 0.3 0.2 s0 s1

i0 0.95 0.05

i1 0.2 0.8

l0 l1

g1 0.1 0.9

g2 0.4 0.6

g3 0.99 0.01

Causal Reasoning

What if the course was easy?

A not so intelligent student may still
be able to get a good grade and hence
a good letter

P (l1|i0, d0) =
∑

Gε(A,B,C)

∑
Sε(0,1)

P (i0, d0, G, S, l1)

P (l1|i0, d1) = 0.513 (increases)
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D

Difficulty

I Intelligence

G Grade S SAT

LLetter

d0 d1

0.6 0.4

i0 i1

0.7 0.3

g1 g2 g3

i0,d0 0.3 0.4 0.3

i0,d1 0.05 0.25 0.7

i1,d0 0.9 0.08 0.02

i1,d1 0.5 0.3 0.2 s0 s1

i0 0.95 0.05

i1 0.2 0.8

l0 l1

g1 0.1 0.9

g2 0.4 0.6

g3 0.99 0.01

Evidential Reasoning

Here, we reason about causes by look-
ing at their effects

What is the probability of the student
being intelligent?

What is the probability of the course
being difficult?

Now let us see what happens if we
observe some effects

P (i1) =?

P (i1) = 0.3

P (d1) =?

P (d1) = 0.4
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P (i1) = 0.3

P (d1) = 0.4

P (i1|g3) = 0.079(drops)

P (d1|g3) = 0.629(increases)

P (i1|l0) = 0.14(drops)

P (l1|l0, g3) = 0.079

(same as P (i1|g3))

D

Difficulty

I

Intelligence

GGrade S

SAT

LLetter

Evidential Reasoning

What if someone tells us that the stu-
dent secured C grade?

What if instead of getting to know
the grade, we get to know that the
student got a poor recommendation
letter?

What if we know about the grade as
well as the recommendation letter?

The last case is interesting! (We will
return to it later)
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P (i1) = 0.3

P (i1|g3) = 0.079(drops)

P (i1|g3, d1) = 0.11(improves)

D

Difficulty

I

Intelligence

GGrade S

SAT

LLetter

Explaining Away

Here, we see how different causes of
the same effect can interact

We already saw how knowing the
grade influences our estimate of in-
telligence

What if we were told the course was
difficult?

Our belief in the student’s intelligence
improves

Why? Let us see
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P (i1) = 0.3

P (i1|g3) = 0.079

P (i1|g3, d1) = 0.11

P (i1|g2) = 0.175

P (i1|g2, d1) = 0.34

D

Difficulty

I

Intelligence

GGrade S

SAT

LLetter

Explaining Away

Knowing that the course was difficult
explains away the bad grade

“Oh! Maybe the course was just too
difficult and the student might have
received a bad grade despite being in-
telligent!”

The explaining away effect could be
even more dramatic

Let us consider the case when the
grade was B
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P (d1) = 0.40

P (d1|g3) = 0.629

P (d1|s1, g3) = 0.76

D

Difficulty

I

Intelligence

GGrade S

SAT

LLetter

Explaining Away

Suppose we know that the student
had a high SAT Score, what happens
to our belief about the difficulty of
the course?

Knowing that the SAT score was high
tells us that the student seems intel-
ligent and perhaps the reason why he
scored a poor grade is that the course
was difficult
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Module 17.6: Independencies encoded by a Bayesian
network (Case 1: Node and its parents)
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Why do we care about independencies encoded in a Bayesian network?

We saw that if two variables are independent then the chain rule gets
simplified, resulting in simpler factors which in turn reduces the number of
parameters.

In the extreme case, we say that in the Bayesian network model, each factor
was very simple (just P (Xi|Y ) and as a result each factor just added 3
parameters

The more the number of independencies, the fewer the parameters and the
lesser is the inference time

For example, if we want to the compute the marginal P (S) then we just need
to sum over the values of I and not on any other variables

Hence we are interested in finding the independencies encoded in a Bayesian
network
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In general, given n random variables, we are interested in knowing if

Xi ⊥ Xj

Xi ⊥ Xj |Z, where Z ⊆ X1, X2, ..., Xn/Xi, Xj

Let us answer some of the questions for our student Bayesian Network
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D I

G S

L

To understand this let us return to
our student example

First, let us see some independen-
cies which clearly do not exist in the
graph

Is L ⊥ G? (No, by construction)

Is G ⊥ D? (No, by construction)

Is G ⊥ I? (No, by construction)

Is S ⊥ I? (No, by construction)

Rule?

Rule: A node is not independent of
its parents
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D I

G S

L

No, the instructor is not going to look
at the SAT score but the grade

Rule?

Rule: A node is not independent of
its parents even when we are given
the values of other variables

Let us focus on G and L.

We already know that G 6⊥ L.

What if we know the value of I? Does
G become independent of L?

No (intuitively, the student may be
intelligent or not but ultimately, the
letter depends on the performance in
the course.)

If we know the value of D, does G
become independent of L.

No (intuitively, the course may be
easy or hard but the letter would
depend on the performance in the
course)

What if we know the value of S? Does
G become independent of L?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 17



61/86

D I

G S

L

Rule?

Rule: A node is not independent of
its parents even when we are given
the values of other variables

The same argument can be made
about the following pairs

G 6⊥ D (even when other variables are
given)

G 6⊥ I (even when other variables are
given)

S 6⊥ I (even when other variables are
given)
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Module 17.7: Independencies encoded by a Bayesian
network (Case 2: Node and its non-parents)
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D I

G S

L

Now let’s look at the relation between
a node and its non-parent nodes

Is L ⊥ S?

No, knowing the SAT score tells us
about I which in turn tells us some-
thing about G and hence L

Hence we expect P (l1|s1) > P (l1|s0)
Similarly we can argue L 6⊥ D and
L 6⊥ I
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D I

G S

L

But what if we know the value of G?

Is (L ⊥ S)|G?

Yes, the grade completely determines
the recommendation letter

Once we know the grade, other vari-
ables do not add any information

Hence (L ⊥ S)|G

Similarly we can argue (L ⊥ I)|G and
(L ⊥ D)|G
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D I

G S

L

But, wait a minute!

The instructor may also want to look
at the SAT score in addition to the
grade

Well, we “assumed” that the in-
structor only relies on the grade.

That was our “belief” of how the
world works

And hence we drew the network ac-
cordingly
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D I

C G S

L

Of course we are free to change our
assumptions

We may want to assume that the in-
structor also looks at the SAT score

But if that is the case we have to
change the network to reflect this de-
pendence

Why just SAT score? The instructor
may even consult one of his colleagues
and seek his/her opinion
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D I

C G S

L

Remember: The graph is a reflec-
tion of our assumptions about how
the world works

Our assumptions about dependencies
are encoded in the graph

Once we build the graph we freeze it
and do all the reasoning and analysis
(independence) on this graph

It is not fair to ask “what if” ques-
tions involving other factors
(For example, what if the professor
was in a bad mood?)
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D I

G S

L

(a)

D I

G S

L

(b)

If we believe Graph (a) is how the
world works then (L ⊥ S)|G

If we believe Graph(b) is how the
world works then (L 6⊥ S)|G

We will stick to Graph(a) for the
discussion
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Let’s return back to our discussion of finding independence relations in the
graph

So far we have seen three cases as summarized in the next module
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Module 17.8: Independencies encoded by a Bayesian
network (Case 3: Node and its descendants)
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D I

G S

L

(G 6⊥ D) (G 6⊥ I) (S 6⊥ I) (L 6⊥ G)
A node is not independent of its par-
ents

(G 6⊥ D, I)|S,L
(S 6⊥ I)|D,G,L
(L 6⊥ G)|D, I, S
A node is not independent of its par-
ents even when other variables are
given

(S ⊥ G)|I?
(L ⊥ D, I, S)|G?
(G ⊥ L)|D, I?
A node seems to be independent of
other variables given its parents
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D I

G S

L

Let us inspect this last rule

Is (G ⊥ L)|D, I?

If you know that d = 0 and i = 1 then
you would expect the student to get
a good grade

But now if someone tells you that the
student got a poor letter, your belief
will change

So (G 6⊥ L)|D, I

The effect (letter) actually gives us in-
formation about the cause (grade)
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D I

G S

L

(G 6⊥ D) (G 6⊥ I) (S 6⊥ I) (L 6⊥ G)
A node is not independent of its par-
ents

(G 6⊥ D, I)|S,L
(S 6⊥ I)|D,G,L
(L 6⊥ G)|D, I, S
A node is not independent of its par-
ents even when other variables are
given

(S ⊥ G)|I
(L ⊥ D, I, S)|G
(G 6⊥ L)|D, I
Given its parents, a node is
independent of all variables
except its descendants
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Module 17.9: Bayesian Networks: Formal Semantics
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We are now ready to formally define the semantics of a Bayesian Network

Bayesian Network Semantics:

A Bayesian Network structure G is a directed acyclic graph where nodes represent
random variables X1, X2, ..., Xn. Let PGaXi

denote the parents of Xi in G and

NonDescendants(Xi) denote the variables in the graph that are not descendants of
Xi. Then G encodes the following set of conditional independence assumptions
called the local independencies and denoted by Ii(G) for each variable Xi.
(Xi ⊥ NonDescendants(Xi)|PGaXi

)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 17



76/86

We will see some more formal definitions and then return to the question of
independencies.
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Module 17.10: I Maps
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D I

G S

L

Let P be a joint distribution over
X = X1, X2, ..., Xn

We define I(P ) as the set of
independence assumptions that hold
in P .

For Example:
I(P ) = {(G ⊥ S|I,D), .....}

Each element of this set is of the
form Xi ⊥ Xj |Z,Z ⊆ X|Xi, Xj

Let I(G) be the set of independence
assumptions associated with a graph
G.
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D I

G S

L

We say that G is an I-map for P if
I(G) ⊆ I(P )

G does not mislead us about
independencies in P

Any independence that G states
must hold in P

But P can have additional
independencies.
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X Y P(X,Y)

0 0 0.08

0 1 0.32

1 0 0.12

1 1 0.48

Consider this joint distribution over
X,Y

We need to find a G which is an
I-map for this P

How do we find such a G?
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X Y P(X,Y)

0 0 0.08

0 1 0.32

1 0 0.12

1 1 0.48

Well since there are only 2 variables
here the only possibilities are
I(P ) = {(X ⊥ Y )} or I(P ) = Φ

From the table we can easily check
P (X,Y ) = P (X).P (Y )

I(P ) = {(X ⊥ Y )}

Now can you come up with a G
which satisfies I(G) ⊆ I(P )?
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X Y X

Y X Y

I(G) = Φ I(G2) = Φ I(G3) = {(X ⊥ Y )}

Since we have only two variables
there are only 3 possibilities for G

Which of these is an I-Map for P?

Well all three are I-Maps for P

They all satisfy the condition
I(G) ⊆ I(P )
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X Y P(X,Y)

0 0 0.08

0 1 0.32

1 0 0.12

1 1 0.48

Of course, this was just a toy
example

In practice, we do not know P and
hence can’t compute I(P )

We just make some assumptions
about I(P ) and then construct a G
such that I(G) ⊆ I(P )
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D I

G S

L

So why do we care about I-Map?

If G is an I-Map for a joint
distribution P then P factorizes over
G

What does that mean?

Well, it just means that P can be
written as a product of factors where
each factor is a c.p.d associated with
the nodes of G
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Theorem

Let G be a BN structure over a set of
random variables X and let P be a joint
distribution over these variables. If G is
an I-Map for P, then P factorizes
according to G
Proof:Exercise

Theorem

Let G be a BN structure over a set of
random variables X and let P be a joint
distribution over these variables. If P
factorizes according to G, then G is an
I-Map of P
Proof:Exercise
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X1

X2

X3

X4

X5

Answer: A complete graph

The factorization entailed by the
above graph is
P (X3)P (X5|X3)P (X1|X3, X5)
P (X2|X1, X3, X5)P (X4|X1, X2, X3, X5)

which is just chain rule of probability
which holds for any distribution

Consider a set of random variables
X1, X2, X3, X4, X5

There are many joint distributions
possible

Each may entail different
independence relations

For example, in some cases L could
be independent of S; in some not.

Can you think of a G which will be
an I-Map for any distribution over
P?
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