
CS 2700 Programing and
Data Structures.

Slot C (Mon 10.00am, Tues 9.00am, Wed 8.00am, Fri 12.00pm)

Instructor: Meghana Nasre (meghana@cse.iitm.ac.in)

Week 2: Complexity (Running time of Programs)

mailto:meghana@cse.iitm.ac.in

Tools for Two Aspects

1. Correctness

2. Complexity

Program / Algorithm Efficiency

Suppose we have more than one algorithms / programs for the same
problem. Which one do you select? How?

An algorithm is a finite solution

to infinitely many problems.

• Are both of them correct? (correctness takes
higher priority over other factors)

• Which one is faster?
• Compare runs on a large set of inputs.
• On the machine that you intend to run

the program.
• Compare running time in seconds /

mins / hours.

Advantages:
You can estimate the maximum absolute time

your program will need provided …

Disadvantages:
• Analysis is too tied up with the machine /

hardware.
• How do other programs affect your program?
• Your inputs may not be representative.

Lets take an example..

Compute gcd of two non-negative integers x and y.

gcd = 1; k = 1;
while (k <= x) {
if ((x%k == 0) && (y%k == 0)) {

gcd = k;
}
k++;

}

Idea1:
• Pick the smaller of the

two, say x.
• Start checking for k

ranging from 1 to x
• If k divides both x and y,

then k is a candidate gcd.

Example continued..

• Compute gcd of two non-negative integers x and y where x >= y.

Idea2: (by Euclid)
• If y divides x, we are done.
• Else we have a smaller

problem to solve.
• gcd (x, y) = gcd (x % y, y)

Needs a proof!

if (y == 0) gcd = x;
while (x%y != 0) {

x = x % y;
if (x < y) {

swap (x, y);
}

}

Learning from the example..

• Implementing the algorithms in this case was easy enough – in
general this may not be true.

• The running time varies across runs of the same program for the
same set of inputs (need to take averages over a large number of
runs!)

• The difference in the runtimes of the two algorithms is visible on
“certain special” inputs. How does one find these?

• Can we avoid these altogether by doing some analysis without
implemention?

Example 2 : Fibonacci numbers.
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

n-th Fibonacci number is
obtained from the (n-1)-th
and (n-2)-th Fibonacci
numbers.

fib(n) = fib(n-1) + fib(n-2)

int fib(n) {
if (n == 0 || n == 1)

return n;
else

return fib(n-1)+fib(n-2);
}

Is there a different way to write this
program?

Learning from the example 2

• The same algorithm implemented in two different ways can lead to a
large difference in the run times.

• Is recursion the issue? No! Euclids idea implemented recursively will
still be faster than Idea1.

• We need some (mathematical) tools to analyze the running time of
these programs / algorithms without relying on the implementation.

Recap from last class..
gcd

• Two different ideas

• One significantly
faster than the
other.

• Need to analyze the
running times
theoretically.

Fibonacci

• The same idea
implemented in
two different ways

• Recursive one may
not even terminate
successfully for
large inputs.

• Needs analysis.

Study these snippets
x = x+y;

y = x-y;

x = x-y;

for (i=0; i<n; i++)

A[i] = 0;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

A[i][j] = 0;

We would like to
distinguish between the
running times of these
codes

Proportional to constant
Proportional to n

Proportional to n^2

Some more snippets..

x = x+y;

y = x-y;

x = x-y;

if (x<y)

if (x<z) min =x;

else min = z;

else

if (y<z) min = y;

else min = z;

for (i=0; i<100; i++)

A[i] = 0; All the codes are equally efficient.
They all take constant time – the
constants are different. We
denote them O(1)

Big “Oh” notation

Big “Oh” notation

f(n) = O(g(n)) if there exists positive constants 𝑐 and 𝑛0 such that

Allows us to establish a relative order amongst the functions.

• 1000 𝑛 > 𝑛2 for small values of n

• Yet we say 1000 𝑛 = 𝑂 𝑛2 since we can select
• 𝑐 = 1 𝑎𝑛𝑑 𝑛0 = 1000

• 𝑐 = 10 𝑎𝑛𝑑 𝑛0 = 100

𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Big “Oh” notation

S1: 1000𝑛 = 𝑂 𝑛3

S2: 1000𝑛 = 𝑂 𝑛2

S3: 1000𝑛 = 𝑂(𝑛)

All these statements are true.
f(n) = O(g(n)) means that f(n)
grows at a rate no faster than
g(n).

g(n) is an upper bound on f(n).

Back to these snippets
x = x+y;

y = x-y;

x = x-y;

for (i=0; i<n; i++)

A[i] = 0;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

A[i][j] = 0;

We would like to
distinguish between the
running times of these
codes

O(1)
O(n)

O(n^2)

One more example..

int fun(int n) {

if (n==0) return 1;

else return fun(n/3);

}

“Oh”, “Omega” and “Theta” notation

𝑓 𝑛 = Ω 𝑔 𝑛
⇒ ∃ 𝑐, 𝑛0 s. t.

𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

𝑓 𝑛 = O 𝑔 𝑛
⇒ ∃ 𝑐, 𝑛0 s. t.

𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

𝑓 𝑛 = Θ 𝑔 𝑛

iff

𝑓 𝑛 = O 𝑔 𝑛

and

𝑓 𝑛 = Ω 𝑔 𝑛

Some commonly used functions in O
estimates..

• O(1) : finding max of 3 integers,
swapping two integers

• O(log(n)) : binary search kind of solutions

• O(n) : linear search, initializing an array

• O(n log(n)) : many sorting algorithms

• O(n^2) : initializing an n X n matrix,
nested loops

• O(2^n) : all subsets of an n-sized array.

Big O estimates…

• 𝑛2 + 2𝑛 + 1 = 𝑂 𝑛 𝑘1

• 𝑛2 + 0.0001 𝑛3 = 𝑂 𝑛 𝑘2

• 3 log 𝑛! + 𝑛 + 3 log(𝑛) = 𝑂 𝑛 𝑘3

• 𝑛 1+0.01 𝑖𝑠 𝑁𝑂𝑇 𝑂(𝑛)

In general, if running time of an algorithm as 𝑂 𝑛𝑘 for any constant k, we call such
an algorithm an efficient algorithm.

Big O as a relation..

• 𝑂(𝑔(𝑛)) is a set of functions 𝑓(𝑛) such that ..

• Hence it is technically more precise to say 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 .

• What properties does the relation Big O satisfy?
• Reflexive

• Transitive

• Symmetric

• If 𝑓(𝑛) = 𝑂(𝑔(𝑛)) then it need not be that 𝑓(𝑛)/𝑔(𝑛) = 𝑂(1)

Similarly analyze Omega and Theta as relations

Useful rules..

• 𝑇1(𝑛) = 𝑂(𝑓1(𝑛)) and 𝑇2(𝑛) = 𝑂(𝑓2(𝑛)) then
• 𝑇1 n + T2 n = max (𝑂 𝑓1 𝑛 , 𝑂(𝑓2 n))

• 𝑇1 n ∗ T2 n = max (𝑂 𝑓1 𝑛 ∗ 𝑓2 𝑛

• If 𝑇 𝑛 is a polynomial of degree k, then 𝑇 𝑛 = Θ(𝑛𝑘)

• log(n) = O(n) and in fact for any constant k, (log(n))^k = O(n)

Little oh .. Yes there is one!

𝑓 𝑛 = o 𝑔 𝑛 ⇒ ∀𝑐 > 0, ∃𝑛0 s. t.
𝑓 𝑛 < 𝑐 𝑔 𝑛 ∀ 𝑛 ≥ 𝑛0

Note the two crucial changes
• The forall instead of there exists for the constant c.
• The < inequality versus the <= inequality between f(n) and c g(n).

Big O gives an upper bound, it may or may not be tight.
Little oh bound is always loose.

2𝑛2 = 𝑂 𝑛2 𝑏𝑢𝑡 2𝑛2 ≠ 𝑜 𝑛2

2𝑛2 = 𝑜(𝑛3)

Is there a little
omega? What about

little theta?

Analogy with real numbers..

• 𝑓 𝑛 = 𝑂 𝑔 𝑛 𝑖𝑠 𝑙𝑖𝑘𝑒 𝑎 ≤ 𝑏

• 𝑓 𝑛 = Ω 𝑔 𝑛 𝑖𝑠 𝑙𝑖𝑘𝑒 𝑎 ≥ 𝑏

• 𝑓 𝑛 = Θ 𝑔 𝑛 𝑖𝑠 𝑙𝑖𝑘𝑒 𝑎 = 𝑏

• 𝑓 𝑛 = 𝑜 𝑔 𝑛 𝑖𝑠 𝑙𝑖𝑘𝑒 𝑎 < 𝑏

Are there more??

Does the analogy break down?

Efficient algorithms

Running time of an algorithm is the measured as the maximum time
the algorithm requires on any input of size n. This is called as worst
case analysis.

Some algorithms may not work differently for different inputs.

Some may do different things based on the input, for example, a
sorting algorithm may do a check whether the input array is sorted.

We say an algorithm is efficient if it runs in time 𝑂(𝑛𝑐) for some
constant c in the worst case.

