CS 2700 Programing and Data Structures.

Slot C (Mon 10.00am, Tues 9.00am, Wed 8.00am, Fri 12.00pm) Instructor: Meghana Nasre (meghana@cse.iitm.ac.in)

Week 2: Complexity (Running time of Programs)

Tools for Two Aspects

1. Correctness
2. complexity

Program / Algorithm Efficiency

Suppose we have more than one algorithms / programs for the same problem. Which one do you select? How?

- Are both of them correct? (correctness takes higher priority over other factors)
- Which one is faster?
- Compare runs on a large set of inputs.
- On the machine that you intend to run the program.
- Compare running time in seconds / mins / hours.

Advantages:
You can estimate the maximum absolute time your program will need provided ...

Disadvantages:

- Analysis is too tied up with the machine / hardware.
- How do other programs affect your program?
- Your inputs may not be representative.

> An algorithm is a finite solution to infinitely many problems.

Lets take an example..

Compute gcd of two non-negative integers x and y .

$$
\begin{aligned}
& \text { gcd }=1 ; k=1 ; \\
& \text { while }(\mathrm{k}<=x)\{ \\
& \text { if }((x \% k==0) \& \&(y \% k==0))\{ \\
& \quad \text { gcd }=k ; \\
& \quad \text { \} } \\
& \text { k++; }
\end{aligned}
$$

Idea1:

- Pick the smaller of the two, say x.
- Start checking for k ranging from 1 to x
- If k divides both x and y , then k is a candidate gcd.

Example continued..

- Compute gcd of two non-negative integers x and y where $x>=y$.

Idea2: (by Euclid)

- If y divides x, we are done.
- Else we have a smaller problem to solve.
- $\operatorname{gcd}(x, y)=\operatorname{gcd}(x \% y, y)$

Needs a proof!

```
if (y == 0) gcd = x;
while (x%y != 0) {
    x = x % y;
    if (x < y) {
        swap (x, y);
    }
}
```


Learning from the example..

- Implementing the algorithms in this case was easy enough - in general this may not be true.
- The running time varies across runs of the same program for the same set of inputs (need to take averages over a large number of runs!)
- The difference in the runtimes of the two algorithms is visible on "certain special" inputs. How does one find these?
- Can we avoid these altogether by doing some analysis without implemention?

Example 2: Fibonaccí numbers.

$$
0,1,1,2,3,5,8,13,21,34, \ldots
$$

n-th Fibonacci number is obtained from the ($\mathrm{n}-1$)-th and (n - 2)-th Fibonacci numbers.
$\mathrm{fib}(\mathrm{n})=\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2)$

$$
\begin{aligned}
& \text { int } f i b(n)\{ \\
& \text { if }(\mathrm{n}==0| | n==1) \\
& \quad \text { return } n ; \\
& \text { else } \\
& \text { return fib(} n-1)+f i b(n-2) ; \\
& \} \quad
\end{aligned}
$$

Is there a different way to write this program?

Learning from the example 2

- The same algorithm implemented in two different ways can lead to a large difference in the run times.
- Is recursion the issue? No! Euclids idea implemented recursively will still be faster than Idea1.
- We need some (mathematical) tools to analyze the running time of these programs / algorithms without relying on the implementation.

Recap from last class..

Fibonacci

- Two different ideas
- One significantly faster than the other.
- Need to analyze the running times theoretically.
- The same idea implemented in two different ways
- Recursive one may not even terminate successfully for large inputs.
- Needs analysis.

Study these suippets

$$
\begin{aligned}
& x=x+y ; \\
& y=x-y ; \\
& x=x-y ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { for }(i=0 ; i<n ; i++) \\
& \qquad A[i]=0 ;
\end{aligned}
$$

Proportional to constant
Proportional to n

$$
\begin{aligned}
& \text { for }(i=0 ; i<n ; i++) \\
& \text { for }(j=0 ; j<n ; j++) \\
& A[i][j]=0 ;
\end{aligned}
$$

Proportional to $n^{\wedge} 2$
We would like to distinguish between the running times of these codes

some more snippets..

$$
\begin{aligned}
& x=x+y ; \\
& y=x-y ; \\
& x=x-y ;
\end{aligned}
$$

```
if (x<y)
    if (x<z) min =x;
    else min = z;
    else
    if (y<z) min = y;
    else min = z;
```

for ($\mathrm{i}=0$; $\mathrm{i}<100$; $\mathrm{i}++$)
$\mathrm{A}[\mathrm{i}]=0$;

All the codes are equally efficient. They all take constant time - the constants are different. We denote them O(1)

Big "Oh" notation

$$
\begin{aligned}
& T(n)=\frac{O(1)}{} \text { IF THERE EXISTS POSITIVE } \\
& \text { CONSTANTS } C \text { AND } n_{0} t \\
& T(n) \leqslant c \text { FOR ALL } n \geqslant n_{0} \\
& T(n)=O(n) \text { IF THERE EXISTS POSITIVE } \\
& \text { CONSTANTS } c \text { and } n_{0} \text { ST } \\
& T(n) \leqslant c n \text { GORAL } n \geqslant n_{0}
\end{aligned}
$$

Big "Oh" notation

$\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exists positive constants c and n_{0} such that

$$
f(n) \leq c g(n) \quad \forall n \geq n_{0}
$$

Allows us to establish a relative order amongst the functions.

- $1000 n>n^{2}$ for small values of n
- Yet we say $1000 n=O\left(n^{2}\right)$ since we can select
- $c=1$ and $n_{0}=1000$
- $c=10$ and $n_{0}=100$

Big "Oh" notation

S1: $1000 n=O\left(n^{3}\right)$
S2: $1000 n=O\left(n^{2}\right)$
S3: $1000 n=O(n)$

All these statements are true. $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n})$) means that $\mathrm{f}(\mathrm{n})$ grows at a rate no faster than $\mathrm{g}(\mathrm{n})$.
$g(n)$ is an upper bound on $f(n)$.

Back to these suippets

$$
\begin{aligned}
& x=x+y ; \\
& y=x-y ; \\
& x=x-y ;
\end{aligned}
$$

O(1)

$$
\begin{aligned}
& \text { for }(i=0 ; i<n ; i++) \\
& \qquad A[i]=0 ;
\end{aligned}
$$

$\mathrm{O}(\mathrm{n})$

$$
\begin{aligned}
& \text { for }(i=0 ; i<n ; i++) \\
& \text { for }(j=0 ; j<n ; j++) \\
& A[i][j]=0 ;
\end{aligned}
$$

We would like to distinguish between the running times of these codes
one more example..
\(\left.$$
\begin{array}{l}\begin{array}{l}\text { int fun(int } n \text {) \{ } \\
\text { if }(n==0) \text { return } 1 ; \\
\text { else return fun }(n / 3) ;\end{array} \\
T(n)=T(n / 3)+c_{1}\end{array}
$$ \quad \begin{array}{l}T(n)=T(n / 3)+c_{1}

T(n)=T(n / g)+c_{1}+c_{1}

c_{1} AND c_{2} ARE CONSTANTS.

T(1)=T\left(n / 3^{2}\right)+2 \cdot c_{1}\end{array}\right\}\)\begin{tabular}{l}
$T(n)=T\left(n / 3^{k}\right)+k \cdot c_{1}$

| $\frac{n}{3^{k}}=1 \Rightarrow k=\log _{3} n$ |
| :--- |

| $T(n)=c_{2}+c_{1} \cdot \log _{3} n=0(\log n)$ |
| :--- | :--- |

\end{tabular}

"Oh", "Omega" and "Theta" notation

$$
\Rightarrow \exists c, n_{0} \text { s.t. }
$$

$$
f(n)=\Omega(g(n))
$$

$$
\Rightarrow \exists c, n_{0} \text { s.t. }
$$

$$
f(n) \leq c g(n) \quad \forall n \geq n_{0}
$$

$$
f(n) \geq c g(n) \quad \forall n \geq n_{0}
$$

$$
\left\{\begin{array}{c}
f(n)=o(g(n)) \\
\Downarrow \\
g(m)= \\
\Omega(f(n))
\end{array}\right.
$$

(a)

(b)

$$
\begin{gathered}
f(n)=\Theta(g(n)) \\
\text { iff } \\
f(n)=0(g(n)) \\
\text { and } \\
f(n)=\Omega(g(n))
\end{gathered}
$$

some commonly used functions in o

 estimates..- O(1) : finding max of 3 integers, swapping two integers
- $\mathrm{O}(\log (\mathrm{n}))$: binary search kind of solutions
- O(n) : linear search, initializing an array
- $\mathrm{O}(\mathrm{n} \log (\mathrm{n}))$: many sorting algorithms
- $O\left(n^{\wedge} 2\right)$: initializing an $n \times n$ matrix,

The Growth of Combinations of Functions

$=$	1
$=$	$\log n$
	$=n$
$=$	$n \log n$
$=$	n^{2}
$=$	2^{n}
$=$	$n!$

[^0] nested loops

- $O\left(2^{\wedge} n\right)$: all subsets of an n-sized array.

Big o estimates...
$c=4, n_{0}=1$ are witness for $O\left(n^{2}\right)$

- $n^{2}+2 n+1=O\left(n^{\left\{k_{1}\right\}}\right) \quad k_{1}=2 ; \quad C=1, \quad n_{0}=1$ are witness for $\Omega\left(n^{2}\right)$ For $O\left(n^{3}\right)$ and $\Omega\left(n^{3}\right)$
- $3 \log (n!)+(n+3) \log (n)=O\left(n^{\left\{k_{3}\right\}}\right) \quad k_{3}=2$

$$
f(n)=O\left(n^{2}\right) \text { HOWEVER } f(n) \neq \Omega\left(n^{2}\right)
$$

- $n^{\{1+0.01\}}$ is NOT $O(n)$
$n^{1 \cdot 0 D 1} \neq O(n)$ assume $\exists c$, no $s t \quad n^{1 \cdot 001} \leqslant c \cdot n \quad \forall n \geqslant n o$
In general, if running time of an algorithm as $O\left(n^{k}\right)$ for any constant k, we call such an algorithm an efficient algorithm.

Big o as a relation.

- $O(g(n))$ is a set of functions $f(n)$ such that ..
- Hence it is technically more precise to say $f(n) \in O(g(n))$.
- What properties does the relation Big O satisfy?
-Transitive $\cup f(n)=O(g(n))$ and $g(n)=O(h(n)) \Rightarrow f(n)=0(h(n))$
- Symmetric x we have seen this earlier
- If $f(n)=O(g(n))$ then it need not be that $f(n) / g(n)=O(1)$
similarly analyze omega and theta as relations

$$
\longrightarrow \text { IS SYMMERIC. }
$$

useful rules..

- $T_{1}(n)=O\left(f_{1}(n)\right)$ and $T_{2}(n)=O\left(f_{2}(n)\right)$ then
- $T_{1}(\mathrm{n})+\mathrm{T}_{2}(\mathrm{n})=\max \left(O\left(f_{1}(n)\right), O\left(f_{2}(\mathrm{n})\right)\right)$
- $T_{1}(\mathrm{n}) * \mathrm{~T}_{2}(\mathrm{n})=\left(O\left(f_{1}(n) * f_{2}(n)\right)\right.$
- If $T(n)$ is a polynomial of degree k , then $T(n)=\Theta\left(n^{k}\right)$
- $\log (\mathrm{n})=\mathrm{O}(\mathrm{n})$ and in fact for any constant $\mathrm{k},(\log (\mathrm{n}))^{\wedge} \mathrm{k}=\mathrm{O}(\mathrm{n})$

Little oh .. Yes there is one!

$$
\begin{aligned}
f(n)=\mathrm{o}(g(n)) \Rightarrow \underbrace{\forall c>0}, \exists n_{0} \text { s.t. } \\
f(n)<c g(n) \quad \forall n \geq n_{0}
\end{aligned}
$$

Note the two crucial changes

- The forall instead of there exists for the constant c.
- The < inequality versus the <= inequality between $f(n)$ and $c g(n)$.

Big O gives an upper bound, it may or may not be tight.
Little oh bound is always loose.

$$
2 n^{2}=O\left(n^{2}\right) \text { but } 2 n^{2} \neq o\left(n^{2}\right)
$$

little theta?

YES THERE Is

$$
2 n^{2}=o\left(n^{3}\right)
$$

Little w . no little θ

Analogy with real numbers..

- $f(n)=O(g(n)) \quad$ is like $\quad a \leq b$
- $f(n)=\Omega(g(n)) \quad$ is like $\quad a \geq b$
- $f(n)=\Theta(g(n)) \quad$ is like $\quad a=b$
- $f(n)=o(g(n)) \quad$ is like $\quad a<b$
- $f(n)=w(g(n))$ is like $a>b$

Are there more?? THERE ARE FUNCTIONS $f(n)$ and $g(n)$ st.
Does the analogy break down? NEITHER $f(n)=O(g(n))$ NOR $g(n)=O(f(n))$.
FIND SUCH FUNCTIONS.

Efficient algorithms

Running time of an algorithm is the measured as the maximum time the algorithm requires on any input of size n . This is called as worst case analysis.

Some algorithms may not work differently for different inputs. Some may do different things based on the input, for example, a sorting algorithm may do a check whether the input array is sorted.

We say an algorithm is efficient if it runs in time $O\left(n^{c}\right)$ for some constant c in the worst case.

[^0]: FIGURE 3 A Display of the Growth of Functions Commonly Used in Big- O Estimates.

