CS 2700 Programing and Data Structures.

Slot C (Mon 10.00am, Tues 9.00am, Wed 8.00am, Fri 12.00pm) Instructor: Meghana Nasre (<u>meghana@cse.iitm.ac.in</u>) Week 1: Correctness of Programs. Tools for Two Aspects 1. Correctness 2. Complexity

Program Correctness

Testing

- Can quickly find obvious bugs
- Cases we do not test still hide bugs
- Testing is exhaustive only if number of inputs is finite

Formal methods should be used in conjunction with testing, not as a replacement

Formal Methods

- Treat programs as mathematical objects
- Use mathematical notation to precisely specify what a program does
- Use rules to mathematically prove the correctness
- Can be expensive

Floyd-Hoare Logic

- More commonly known as Hoare Logic
- Method for mathematically reasoning about programs
- Basis of "automated" program verification systems
- Works with Hoare Triples

{pre-condition} Statement {post-condition}

Tony Hoare

Robert Floyd

Pre and Post-conditions

- Constraints that MUST be satisfied at a program point.
- Constraints are simple Boolean expressions.
- Pre-conditions : Prior to the statement.
- Post-conditions: After the statement.
- Having the conditions as precise as possible helps.
- Types of statements:
 - Assignments, conditionals, loops

Assignments

Assumptions:

- Values do not overflow
- x is of integer data type

Observe:

- Assuming x is of type int, E2: x > 0.
- E2 : x %2 == 0
- If we had an additional precondition that y >=0, then E3: x > 1

Conditionals

E3 when x = 10 at Line **:

• (x > 0 && x <= 5) || x == 10

E3 when x = 4 at Line **:

- (x > 0 && x <= 5) || x == 4
- (x > 0 && x <= 5)

Question: Can we replace the || by XOR?

Conditionals

if (B) then S1

• Either the effect of S1 is visible as E2

OR

• E1 and NOT(B) hold

E3: E2 || (E1 && NOT(B))

observe the ||

Conditionals

```
\{x > 0\}
if (x > 5) {
   { x > 5 }
    x = 4;
   \{ x == 4 \}
} else {
    { E1 }
   x = x - 10;
    { E2 }
   E3 }
```

E1: x > 0 && x <= 5 E2: x > -10 && x <= -5 E3: x == 4 || (-9 <= x <= -5)

if (B) then S1 else S2

- Note the && in E1 and E2
- Note the || in E3
- Relative updates (x = x 10) modify the earlier expressions
- Absolute updates (x = 4) generate new expressions

How does this relate to my programs? (a = 3)#include<stdio.h> int main() { int x = 3; int y; // read y from user. int *ptr = &x; if (y == 0) ptr = NULL; if (*ptr < 5) printf(" x<5"); else printf(" $x \ge 5$ ");

What is the output of the program?

 $(x = = 3) \land (y = 0) \land (p = = + x)$

How do we address it?

How do we address it with our new learning about preconditions and post-conditions?

- while (B) { S }
- Loops are interesting since we do not know how many times the loop executes.
- We want a condition which holds true irrespective of the times the loop executed.

Loop Invariant

We call an expression $\ensuremath{\mathfrak{I}}$ a loop invariant if:

- It holds just before the loop.
- It holds just after the test B. We assume test B does not have side effects.
- It holds at the end of the loop.
- It need NOT hold at intermediate steps.

Loop Invariant : example 1

Program to find the sum of first n positive integers

- Some trivial invariants:
 - k == 1 || k == 2 || k == 3...
 - sum == 1 || sum == 3 || ...
 - Combining the above..

Invariant: sum = 1 + 2 + 3 + .. + k Is this correct? int k = 1; sum = 0; while $(k \le n)$ { sum = sum + k;k = k + 1;

Correct Invariant: sum = 1 + 2 + 3 + .. + k-1

Loop Invariant : example 2

What does the loop do? Sets A[0] ... A[n-1] equal to 0. What should be the post condition at the end of the loop?

Guess a loop invariant.

{ 0 <= j <= n-1 && for all j >= k, A[j] == 0 } Assume n > 0 is a pre-condition. {k <= n && k > = 0} This is a loop invariant but not useful one.

Loop Invariant: example 3

Take away: avoid writing such cryptic programs.

- Finding elegant and useful loop invariants needs a high level understanding of the code.
- It is non-trivial to do it automatically.
- The programmer (you) should state them as precisely as possible.

Testing whether a given condition is a valid invariant is much simpler than coming up with the condition.

Program Correctness (partial)

Overall strategy:

Notes:

- Write your algorithm / program
- Write down the pre-conditions at the beginning and postconditions at the end of the program.
- For each statement show that its post-condition follows from the pre-condition.
- Axioms or rules of Hoare logic are simple, but we can select too strong a pre-condition or too weak a post-condition.
- Need to achieve the right tradeoff.
- We are NOT proving termination via this method. We assume that the program terminates.

Axioms of Hoare Logic

• Empty Statement :

 $\{ P \}$ no-op $\{ P \}$

• Assignment Statement: $\{P[x / t]\} x = t \{P\}$

If P is true when x is replaced by t **before** the assignment, then P is true after the assignment.

• Rule of Composition:

{ P} S1; S2 {R}

Axioms of Hoare Logic

• Strengthening pre-cond:

 $\{ P \} S \{ Q \} \& R \rightarrow P$

 $\{ R \} \quad S \quad \{ Q \}$

example: {practiced 10 problems} write exam {90+ marks} {practiced 20 problems} write exam {90+ marks}

• Weakening post-cond:

{ P} S {Q} && Q -> R

 $\{ P \}$ **S** $\{ R \}$

example: {practiced 10 problems} write exam {90+ marks} {practiced 10 problems} write exam {80+ marks}

Axioms of Hoare Logic

• Conditional: {P && B} S1 {Q} && {P && NOT(B) S2 {Q}

 $\{P\}$ if (B) then S1 else S2 $\{Q\}$

• Loops:

.

•

{P && B} S {P}

{ P} while (B) S { P && NOT(B) }

× BY X+Y

Using Hoare Triples

```
int fun (int n) {
    int k, j;
    k = 0; j = 1;
   while (k < n) {
          k = k+1; j = 2 *j;
   { R }
    return j;
```

GUESS: (1) POST CONDITION (2) LOOP INVARIANT POST CONDITION: == 2 LOOP INVARIANT: j==2k NOTE THAT (LOOP INV K K==n) $\Rightarrow j = = 2^n$

 $\{i == 2^k\}$ ()while (k < n)(2) $\{j == 2^k \& \& k < n\}$ k = k+1; ${}^{2}_{j} = = 2^{k}$ j = 2 *j; (3) {j == 2^k}

Example continued..

WE GUESSED LOOP INV AS j==2" , IT NEEDS TO HOLD AT (1), (2), (3) CHECK WHETHER IT HOLDS. BY USING ASSIGNMENT AXIOM TWICE, WE CAN VERIEY THAT LOOP INV. IS INDEED CORRECT.

THE (K<n) part comes from the check of while loop.

Example continued..

NOTE THAT WITH THE GUESSED INVARIANT AND POST COND. WE GET TRUE AS THE PRE CONDITION. IF WE STRENTHEN OUR POST CONDITION THEN WE WILL OBTAIN N > 0. as precondition

One last example.

- Input: An array A of integers indexed from 0 to n-1
- Goal: set max = largest element in the array.
- Write the postcondition.

// A : indexed from 0 .. n-1 int m = A[0];int k = 1; while (k < n) { if (A[k] > m)m = A[k];} else { // do nothing. k = k+1;

To Summarize..

- Hoare logic and Hoare triples provide an automated way of proving (partial) program correctness.
- Hoare style proofs can become very lengthy much more detailed.
- How detailed should our proofs be?
 - We should be able to write the detailed Hoare style proofs (if needed).
 - Most proofs that we will write will be compact (example: prove invariant of the loop).
 - Be ready to expand a compact proof to a detailed proof if necessary!
- See list of <u>incomplete proofs</u> on wikipedia

Does this terminate?

```
void fun (int n ) {
  print n;
  while (n != 1) {
      if (n % 2 == 0)
         n = n / 2; print n;
      else
         n = 3*n+1; print n;
  }
  print n;
```