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Tools for Two Aspects

1. Correctness

2. Complexity 



Program Correctness 

Testing

• Can quickly find obvious 
bugs

• Cases we do not test still 
hide bugs

• Testing is exhaustive only if 
number of inputs is finite

Formal Methods

• Treat programs as 
mathematical objects

• Use mathematical notation to 
precisely specify what a 
program does

• Use rules to mathematically 
prove the correctness

• Can be expensive 
Formal methods should be used in 
conjunction with testing, not as a 

replacement



Floyd-Hoare Logic

• More commonly known as Hoare Logic

• Method for mathematically reasoning about 
programs

• Basis of “automated” program verification systems

• Works with Hoare Triples

{pre-condition} Statement {post-condition}

Tony Hoare

Robert Floyd



Pre and Post-conditions

• Constraints that MUST be satisfied at a program point.

• Constraints are simple Boolean expressions.

• Pre-conditions : Prior to the statement.

• Post-conditions: After the statement.

• Having the conditions as precise as possible helps.

• Types of statements:
• Assignments, conditionals, loops



Assignments

{ x > 0 }
x = x+1;

{   E1   }

{ x > 0 }
x = 2*x;

{   E2  }
x = x+y;
{   E3  }

Assumptions: 
• Values do not overflow
• x is of integer data type

Observe: 
• Assuming x is of type int, E2: x > 0.
• E2 : x %2  == 0
• If we had an additional pre-

condition that y >=0, then  E3: x > 1



Conditionals

{ x > 0 }
if (x > 5) { 

{  x > 5   }
x = 4;              **
{ x == 4 }

}
{    E3  }

E3 when x = 10 at Line **: 
• (x > 0 && x <= 5) || x == 10

E3 when x = 4 at Line **: 
• (x > 0 && x <= 5) || x == 4
• (x > 0 && x <= 5)

Question: Can  we replace the || by XOR?



Conditionals

{ E1 }
if (B) {

{  E1 && B   }
S1

{   E2        }
}
{ E3 }

if (B)  then S1

• Either the effect of S1 is visible 
as E2

OR
• E1 and NOT(B) hold 

E3: 
E2 || (E1 && NOT(B))

observe the  ||



Conditionals

{ x > 0 }
if (x > 5) {

{  x > 5   }
x = 4;

{   x == 4   }
} else  { 

{   E1   }
x = x – 10;
{   E2   }

}
{   E3   }

E1:  x > 0 && x <= 5
E2:  x > -10 && x <= -5
E3:  x == 4 ||  ( -9 <= x <= -5)

if (B)  then S1 else S2

• Note the && in E1 and E2
• Note the || in E3

• Relative updates (x = x – 10) modify the 
earlier expressions

• Absolute updates (x = 4) generate new 
expressions



How does this relate to my 
programs?

#include<stdio.h>
int main() {

int x = 3;
int y;   // read y from user.
int *ptr = &x;
if (y == 0) ptr = NULL;
if (*ptr < 5) printf(“ x<5”);
else printf(“ x >= 5”);

}

• What is the output of the 
program?

• How do we address it?

• How do we address it with our 
new learning about pre-
conditions and post-conditions?



Loops

• while (B)  {  S  }

• Loops are interesting 
since we do not know 
how many times the 
loop executes.

• We want a condition 
which holds true 
irrespective of the 
times the loop 
executed.

{ x >= 0 && y >= 0  }
while (x >= y) {

{  x >= y && y >= 0  }
x = x – y;

{  x >= 0 && y >=0  }
}
{ x >= 0 && y >= 0 }



Loop Invariant 

• {        }

• while (B) {

• {       && B  }

• S1; S2; S3;

• {  I   }

• }

• {       &&  NOT(B) }

We call an expression      a loop 
invariant if:

• It holds just before the loop.
• It holds just after the test B. We 

assume test B does not have side 
effects.

• It holds at the end of the loop.
• It need NOT hold at intermediate 

steps.



Loop Invariant : example 1

int k = 1; sum = 0;

while ( k <= n )  {

sum = sum + k;

k = k + 1;

}

Program to find the sum of first n 
positive integers

• Some trivial invariants:
• k == 1 || k == 2 || k == 3…
• sum == 1 || sum == 3 || …
• Combining the above..

Invariant: sum = 1 + 2 + 3 + .. + k
Is this correct?

Correct Invariant: sum = 1 + 2 + 3 + .. + k-1



Loop Invariant : example 2

A: array indexed 0 .. n-1

int k = n; 

while ( k != 0 )  {

k = k - 1;

A[k] = 0;

}

What does the loop do?
Sets A[0] … A[n-1] equal to 0.
What should be the post condition at the 
end of the loop?

{for j = 0 .. n-1: A[j] == 0}

Guess a loop invariant.

Assume n > 0 is a pre-condition.
{k <= n && k > = 0}   
This is a loop invariant but not useful one.

{ 0 <= j <= n-1 &&
for all j >= k,   A[j] == 0 }



Loop Invariant: example 3

t = 1; u = xy[0]; 

while ( t < r)  {

if (xy[t] > u) 

u = xy[t];

t++;

}

• Finding elegant and useful loop 
invariants needs a high level 
understanding of the code.

• It is non-trivial to do it automatically. 

• The programmer (you) should state 
them as precisely as possible.

Testing whether a given condition is a 
valid invariant is much simpler than 
coming up with the condition.

Take away: avoid 
writing such 

cryptic programs.



Program Correctness (partial)

Overall strategy:

• Write your algorithm / program

• Write down the pre-conditions 
at the beginning and post-
conditions at the end of the 
program.

• For each statement show that 
its post-condition follows from 
the pre-condition.

Notes:

• Axioms or rules of Hoare logic are 
simple, but we can select too 
strong a pre-condition or too weak 
a post-condition.

• Need to achieve the right trade-
off.

• We are NOT proving termination 
via this method. We assume that 
the program terminates.



Axioms of Hoare logic

• Empty Statement :  

• Assignment Statement:

• Rule of Composition:                

{ P}   no-op  {P}

{ P [x  / t]}   x = t  {P}

{ P}   S1; S2  {R}

{ P}  S1  {Q} && {Q} S2 {R}

If P is true when x is replaced by t 
before the assignment, then P is true 
after the assignment.



Axioms of Hoare logic
• Strengthening pre-cond:

• Weakening post-cond:    

{ R}     S   { Q}

{ P}  S  {Q}   && R -> P

{ P}     S   { R}

{ P}  S  {Q}   && Q -> R

example: {practiced 10 problems} write exam {90+ marks}
{practiced 20 problems} write exam {90+ marks}

example: {practiced 10 problems} write exam {90+ marks}
{practiced 10 problems} write exam {80+ marks}



Axioms of Hoare logic
• Conditional:

• Loops:                                    

{P && B} S1 {Q} &&  {P &&  NOT(B) S2 {Q}

{ P}   if (B) then S1 else S2   { Q}

{P && B} S {P}

{ P}  while (B) S   { P && NOT(B) } 



Using Hoare Triples

{ x and y are int
x == t1, y == t2 }
x = x + y;
y = x – y;
x = x – y;

{ P }
{x == t2 && y == t1 }

{x - y == t2 && y == t1 }

{x – (x – y) == t2 && x -y == t1 }

{y == t2 && x + y – y == t1 }



Using Hoare Triples

int fun (int n) {

int k, j;  

k = 0; j = 1;

while ( k < n ) {

k = k+1;   j = 2 *j;

}

{ R }

return j;

}



Example continued..

{ j == 2^k}
while ( k < n ) {

{j == 2^k && k < n}
k = k+1;

j = 2 *j;
{j == 2^k}

}



Example continued..

int k, j;  

k = 0; 

j = 1;

while ( k < n ) {

k = k+1;   j = 2 *j;

}

}



One last example..

• Input: An array A of 
integers indexed from 0 
to n-1

• Goal: set max = largest 
element in the array.

• Write the post-
condition.

// A : indexed from 0 .. n-1

int m = A[0]; 

int k = 1;

while ( k < n ) {

if (A[k] > m) 

m = A[k];

} else {

// do nothing.

}

k = k+1;

}



To Summarize..

• Hoare logic and Hoare triples provide an automated way of proving 
(partial) program correctness.

• Hoare style proofs can become very lengthy much more detailed.

• How detailed should our proofs be?
• We should be able to write the detailed Hoare style proofs (if needed).

• Most proofs that we will write will be compact (example: prove invariant of 
the loop).

• Be ready to expand a compact proof to a detailed proof if necessary!

• See list of incomplete proofs on wikipedia

https://en.wikipedia.org/wiki/List_of_incomplete_proofs


Does this terminate?

void fun (int n ) {

print n;

while (n != 1) {

if (n % 2 == 0)

n = n / 2; print n; 

else 

n = 3*n+1;  print n;

}

print n;

}


