CS3100 - Paradigms of Programming Languages

 Introduction
V. Krishna Nandivada

IIT Madras

Academic Formalities

- Programming assignments $=4 \times 08$ marks,
- Project = 08 marks.
- Quiz 1 = Quiz $2=15$ marks, Final = 30 marks. Absolute grading.
- Extra marks
- During the lecture time - individuals can get additional 5 marks.
- How? - Ask a good question, answer a chosen question, make a good point! Take 0.5 marks each. Max one mark per day per person.
- Attendance requirement - as per institute norms. Non compliance will lead to 'W' grade.
- Proxy attendance - is not a help; actually a disservice.
- Plagiarism - A good word to know. A bad act to own.
- Will be automatically referred to the institute welfare and disciplinary committee.
Contact (Anytime) :
Instructor: Krishna, Email: nvk@iitm.ac.in, Office: SSB 406.
TAs : Ramya K, Omkar D, Shashin H, Kranti I, Aoukhsana V C, Nilesh
T, Poorbi M D, Rutuj K K, G Mahesh.

Course outline

- What:
- Paradigm: A typical example or pattern.
- Paradigms of Programming: Different patterns in Programming (languages)
- When?
- When the first programming language was born. ??
- Plankalküli, by Konrad Zuse, 1942 (not implemented at that time).
- Short Code, John Mauchly 1950 (first implemented language).
- Fortran, John Backus and team, 1954 (first widely available GP language+compiler)
- Why? Study?
- A programming language is an artificial language designed to communicate instructions to a machine, particularly a computer.
- Get understanding of the intrinsic properties behind comp. langs.
- Understand the relationships between the plethora of languages that you know/will learn.
- Handy, if you care about the languages that you use/will learn.

Start exploring

- Java/C++ familiarity a must.
- Scheme - functional language
- Prolog - logic programming language
- Find the course webpage:
http://www.cse.iitm.ac.in/~krishna/cs3100/

Expectations

What qualities are important in a programming language?
(0) Should be easy to express the program logic.
(2) Should reduce programming errors.
(3) Code should run fast.
(- Should support modular compilation.
© Should help in thinking...
©
Each of these shapes your expectations about this course

Get set. Ready steady go!

A single instruction programming language

```
subleq a, b, c ; Mem[b] = Mem[b] - Mem[a]
; if Mem[b] <= 0 goto c
    - If the optional third argument is missing:
            - the target branch is the address of the following instruction.
    subleq a, b
\equiv
    subleq a, b, L1
    L1: ...
```

Assume that Mem [z] contains zero.

```
subleq a, z
subleq z, b
subleq z, z
Mem[b] = Mem[a] + Mem[b] ; add a, b
```

- What all languages do you know?
- Why are there so many languages?
- Has the last language already been developed?

```
subleq b, b
add a, b
Mem[b] = Mem[a] ; copy a, b
```

- One instruction set computer - read more about its power.

A timeline of programming languages

New languages keep getting developed

What is the goal of CS3100?

There was no

- Java 30 years back.
- C\# 20 years back
- Rust 15 years back
- Webassembly 5 years back.

A computer language is defined in two dimensions:

- Syntax
- Lexical
- Syntactic
- Semantics

Example:
$\mathrm{x}=3+\mathrm{y}$;

- What is the difference between compilation and interpretation?

Not necessarily to learn new languages. But to

- Understand the concepts that valid across multiple languages.
- Programming paradigms.
- Learn to a bit on how to design and implement languages.
- Understand the difference between the syntax and fundamental features.

Difference between Syntax and Semantics

Consider an expression language:
$e:=0$ | true | false
| succ e | if e then e else e | e == e
Values in the language:

- 0 , succ 0 , succ succ 0 etc,
- Short form $S^{0}, S^{1}, S^{2}, S^{3}, \ldots$
- Numerals: $0,1,2,3, \ldots$
- true, and false

Valid semantics: Type checking a program (cont.)

$\frac{e 1: \text { Int } \quad e 2: \text { Int }}{e 1==e 2: \text { Bool }}$

$$
\frac{e 1: \text { Bool } \quad e 2: \text { Bool }}{e 1==e 2: \text { Bool }}
$$

$$
\frac{e: \operatorname{Int}}{\operatorname{succ} e: \text { Int }}
$$

$$
\frac{e: \text { Bool } e 1: t \quad e 2: t}{\text { if } e \text { then } e 1 \text { else } e 2: t}
$$

Valid semantics: Type checking a program

- A program is a closed expression.
- Valid types: Int and Bool

0 : Int
false : Bool
true : Bool

Semantics

- Interpretation of a program is the step by step procedure to reduce a given program to a value.
Interpretation of a program in our expression language

$$
\operatorname{succ} \frac{e \rightarrow e^{\prime}}{\operatorname{succ} e \rightarrow \operatorname{succ} e^{\prime}}
$$

$$
\text { equality } 1 \frac{e 1 \rightarrow e 1^{\prime}}{e 1==e 2 \rightarrow e 1^{\prime}==e 2}
$$

$$
\text { equality } 2 \frac{e 1 \rightarrow e 1^{\prime}}{v==e 1 \rightarrow v==e 1^{\prime}}
$$

$$
\text { equality } 3 \Gamma
$$

$$
\text { equality } 4 \frac{v=S^{m} \quad v^{\prime}=S^{m^{\prime}} \quad m \neq m^{\prime}}{v==v^{\prime} \rightarrow \text { false }}
$$

Semantics (cont.)

equality $5-$ true $==$ true \rightarrow true
equality $6 \xrightarrow[\text { false }==\text { false } \rightarrow \text { true }]{ }$

$$
\text { equality } 7 \longdiv { \text { true } = = \text { false } \rightarrow \text { false } }
$$

equality $8 \xrightarrow[\text { false }==\text { true } \rightarrow \text { false }]{ }$

- Each program has state.
- state $=$ Memory/Storage
- Program consists of a series of actions.
- Each action may change the state of the program.
- imperative program: describes how a program operates step by step.

Semantics (cont.)

if $1 \frac{e \rightarrow e^{\prime}}{\text { if } e \text { then } e 1 \text { else } e 2 \rightarrow \text { if } e^{\prime} \text { then } e 1 \text { else } e 2}$

$$
\text { if } 2 \text { if true then } e 1 \text { else } e 2 \rightarrow e 1
$$

Imperative Programming

Consider a simple calculator language:

Assignment := Id = Expr
Expr := Id + Expr | Id - Expr |
Id * Expr | Id / Expr | Constant
Write type rules. Write the operational semantics.

```
P := D S
D := Type Id; D | e
Type := int | float
S := Assignment | Expr
```


Well understood constructs

Ambiguous operator

- Assignment
- $x=y$
- $x=\& y$
- $x=e$
- $x=A[e]$ or $x={ }^{*} y$
- $A[e]=e$ or ${ }^{*} x=y$
- Conditional:
- if-then
- if-then-else
- switch-case
- Ambiguous operator
- Loops:
- for
- while
- do-while
- break/continue
- Functions: calls and return.

Fun fact with cont inue operator.

Fun code with loops

```
i = 2; flag = 0;
do{
    i --;
    flag = flag | (i % 2);
    if (flag) continue;
    printf("i = %d, flag = %d, ", i, flag);
} while (i > 0);
Q: Output of the program?
(1) Infinite loop
(2) \(\mathrm{i}=1\), flag \(=1\),
(3) \(\mathrm{i}=1\), flag \(=1, \mathrm{i}=0\), flag \(=1\),
(4) No output

\section*{Fun code with loops}

\section*{Variant records}

Consider a Java loop nest of the following form:
```

for (i1...)
for (i2...)
for (i3...)
for (ik...){
if (c1)
exit out of i1 loop
if (c2)
proceed with the next iteration of i2 loop

```
\}

How to write such code? Goto statements Using flag variables break/continue with label.
```

type kind = (i, f, c); (* An enumeration type *)

```
type kind = (i, f, c); (* An enumeration type *)
    node = record (* Has intuitively two fields:
    node = record (* Has intuitively two fields:
                                "k" and one of the remaining 3 *)
                                "k" and one of the remaining 3 *)
        case k: kind of
        case k: kind of
            i: (ii: integer);
            i: (ii: integer);
            f: (ff: float);
            f: (ff: float);
            c: (cc: char);
            c: (cc: char);
        end;
```

 end;
    ```

\section*{Method calls (brief recollection)}
- Background: Each C struct has many fields.
- Background: size of struct = sum of size of all the fields.
- C Union:
```

union ifc_type {
int ii;
float ff;
char cc;
};

```
union ifc_type x;
- How to know what does x contain?
- Parameter passing convention: Call-by value, call-by reference, textual substitution.
- C/Java supports call-by value semantics.
- C++ supports call-by reference.
- C macros support textual substitution.

\section*{Tail calls and their impact}
- When the last statement executed in the body of a function is a call, such a function-call is called a "tail-call".
- A function (or a program) is said to be in tail-call form, if every call is in the tail position.
- A tail-call can be replaced by a jump!
- A lot of impact can be seen in tail-recursive functions.

\section*{Illustration of tail call elimination}
```

int search(int low, int high, int T, int X[]){
int k;
if (low > high) return -1; // NOT found
k = (low + high) / 2;
if (T == X[k]) return k;
else if (T < X[k]) return search (low, k-1, T, X);
else if (T > X[k]) return search (k+1, high, T, X);
}
int search(int low, int high, int T, int X[]){
int k;
Loop:
if (low > high) return -1; // NOT found
k = (low + high) / 2;
if (T == X[k]) return k;
else if (T < X[k]) {high = k-1;}
else if (T > X[k]) {low = k+1;}
goto Loop;
}

```

\section*{Scheme Language}

An interpreted language.
A sample session: (the shell evaluates expressions)
\$ mzscheme
Welcome to Racket v5.2. > (define l' (a b c))
\(>3\)
3 (a b c)
\(>(+13) \quad>\left(\right.\) define \(\left.u^{\prime}\left(\begin{array}{ll}+ & \mathrm{x} \\ \hline\end{array}\right)\right)\)
\(4>\mathrm{u}\)
\(>\prime(\mathrm{a} \mathrm{b} \mathrm{c}) \quad\binom{+\mathrm{x}}{1}\)
\(>\left(\right.\) define \(u\left(\begin{array}{ll}+ & 1))\end{array}\right.\)
\(>\) (define x 3) \(>x\)
\(>\) x 3 3
\(>(+\mathrm{x} 1)>\)
4 4

\section*{Procedures}

\section*{Procedures (contd)}

Creating procedures with lambda: (lambda (x) body)
```

(lambda (x) (+ x 1))
\#<procedure>
((lambda (x) (+ x 1)) 4)
5
(define mysucc (lambda (x) (+ x 1)))
(mysucc 4)
(define myplus (lambda (x y) (+ x y)))
(myplus 3 4)
((lambda (x y) (+ x y)) 3 4)
7

```

Procedures can take other procedures as arguments:
> ((lambda (f x) (f x 3)) myplus 5)
8

Q: How are C pointers different than a lambda?

\section*{Kinds of data}
- Basic values \(=\) Symbols \(\cup\) Numbers \(\cup\) Strings \(\cup\) Lists
- Symbols: sequence of letters and digits starting with a letter. The sequence can also include other symbols, such as -,\$,=,.,,/,?,
Numbers: integers, etc.
- Strings: "this is a string"
- Lists:
(1) the empty list is a list ()
(2) a sequence \(\left(s_{1}, \cdots s_{n}\right)\) where each \(s_{i}\) is a value (either a symbol, number, string, or list)
(3) nothing is a list unless it can be shown to be a list by rules (1) and (2).

This is an inductive definition, which will play an important part in our reasoning. We will often solve problems (e.g., write procedures on lists) by following this inductive definition.

\section*{Building lists}
- cons: if v is the value s , and l is the list \(\left(s_{1} \cdots s_{n}\right)\), then (cons s l) is the list ( \(\mathrm{v} s_{1} \cdots s_{n}\) ).
- cons builds a list whose car is \(s\) and whose cdr is 1 .
\((\operatorname{car}(\) cons s l) \()=\mathrm{V}\)
\((\operatorname{cdr}(\) cons s l) \()=1\)
cons : value * list -> list
car : list -> value
cdr : list -> list

\section*{Boolean related}

\section*{Literals:}

\section*{\#t, \#f}

\section*{Predicates:}
\begin{tabular}{|c|c|c|}
\hline (number? s) & & (number? 3) \\
\hline (symbol? s) & & (symbol? 'a) \\
\hline (string? s) & & (string? "Hello") \\
\hline (null? s) & & (null? '()) \\
\hline (pair? s) & & (pair? ' (a . b) ) \\
\hline (eq? s1 s2) - & -- works on symbols &  \\
\hline (equal? s1 s2) - & -- recursive & (equal? "a" "a") \\
\hline (= n1 n2) - & -- works on numbers & \(\left(\begin{array}{ll}= & 2\end{array}\right)\) \\
\hline (zero? n) & & (zero? x ) \\
\hline (> n1 n2) & & (> 3 2) \\
\hline Conditional: & & \\
\hline (if bool e1 e2) & & \\
\hline v.Krishna Nandivada (IIT Madras) & CS3100-Jul 2022 & 43/171 \\
\hline
\end{tabular}

Scheme supports and, or, not etc for making complex boolean expressions.
How to define them using what we already know?
```

(define (not x)
(if x \#f \#t))
(define (and x y)
(if x y \#f))
(define (or x y)
(if x \#t y))

```
?
// Not exactly

\section*{Recursive procedures}
```

(define e
(lambda (n x)
(if (zero? n)
1
(* x
(e (- n 1) x)))))

```

Why does this work? Let's prove it works for any n , by induction on n :
(1) It surely works for \(\mathrm{n}=0\).
(2) Now assume (for the moment) that it works when \(\mathrm{n}=\mathrm{k}\). Then it works when \(n=k+1\). Why? Because (e \(n x)=(* x\) (e \(k\) \(\mathrm{x})\) ), and we know e works when its first argument is k . So it gives the right answer when its first argument is \(k+1\).

\section*{Recursive procedures}

\section*{Loops}
```

(define fact
(lambda (n)
(if (zero? n) 1 (* n (fact (- n 1))))))
(fact 4) = (* 4 (fact 3))
= (* 4 (* 3 (fact 2)))
=(* 4 (* 3 (* 2 (fact 1))))
=(* 4 (* 3 (* 2 (* 1 (fact 0)))))
=(* 4 (* 3 (* 2 (* 1 1))))
=(* 4 (* 3 (* 2 1)))
=(* 4 (* 3 2))
=(* 4 6)
= 24

```
- Each call of fact is made with a promise that the value returned will be multiplied by the value of \(n\) at the time of the call; and
- thus fact is invoked in larger and larger control contexts as the calculation proceeds.

\section*{Trace - loop}

\section*{Many way switch - cond}

\section*{(fact-iter 4)}
= (fact-iter-acc 4 1)
\(=(\) fact-iter-acc 3 4)
\(=\) (fact-iter-acc 2 12)
\(=(\) fact-iter-acc 124\()\)
\(=(\) fact-iter-acc 024\()\)
\(=24\)
- fact-iter-acc is always invoked in the same context (in this case, no context at all).
- When fact-iter-acc calls itself, it does so at the "tail end" of a call to fact- iter-acc. That is, no promise is made to do anything with the returned value other than return it as the result of the call to fact-iter-acc.
- Thus each step in the derivation above has the form (fact-iter-acc n a).

\section*{Let}

When we need local names, we use the special form let:
```

(let ((var1 val1)
(var2 val2)
...)
exp)
(let ((x 3)
(y 4))
(* x y))
let ((x 5))
(let ((f (+ x 3))
(x 4))
(+ x f)))

```

\section*{Local recursive procedures}

The scope of fact-iter-acc doesn't include it's definition. Instead, we can use letrec:
```

letrec
((name1 proc1)
(name2 proc2)
...)
body)

```
letrec creates a set of mutually recursive procedures and makes their names available in the body. So we can write
```

(define fact-iter
(lambda (n)
(letrec ((fact-iter-acc
(lambda (n a)
(if (zero? n) a
(fact-iter-acc (- n 1)
(* n a))
))))
(fact-iter-acc n 1))))

```

\section*{Examples with let and letrec}
```

(letrec ((x (+ x 1))) x) -- undefined.
(let ((x 3))
(letrec ((x (+ x l))) x)) -- undefined.
(letrec ((x y) (y 1)) x) -- undefined
(letrec ((x (lambda () (+ y 1))) (y 3)) (x)) -- 4
(let ((x 2))
(let ((x 3))
(let ((y (+ x 4)))
(* x y)))) = 21
\#三
(let ((x 2))
(let ((x 3)
(y (+ x 4)))
(* x y))) = 18

Sample Problem

Q: Find the maximum number in a list.
A: Define a function that takes one argument (A list of numbers) and returns the largest element.
A: Write the recursive definition first.

```
(define largest
    (letrec ((largest-ele
```

 (lambda (ll e)
    ```
                (lambda (ll e)
                (if (empty? ll)
                (if (empty? ll)
                            e
                            e
                            (if (>= e (car ll))
                            (if (>= e (car ll))
                            (largest-ele (cdr ll) e)
                            (largest-ele (cdr ll) e)
                            (largest-ele (cdr ll) (car ll)))))))
```

```
                            (largest-ele (cdr ll) (car ll)))))))
```

```
        (lambda (ll)
        (if (empty? ll)
            'Empty-list
            (largest-ele (cdr ll) (car ll))))))
```

Practice problems (with and without using letrec)

```

\section*{Merge sort}
- Recall:
- Create two halves.
- Sort both halves
- Merge
- Find the ' \(n\) ' the element in a given list. (Input: a list and \(n\). Output: error or the n'th element)
- symbol-only? - checks if a given list contains only symbols. List \(\rightarrow\) boolean
- member?: (List, element) \(\rightarrow\) boolean
- remove-first: List \(\rightarrow\) List
- replace-first: (List, elem) \(\rightarrow\) List
- remove-first-occurrence: (List, elem) \(\rightarrow\) List
- remove-all-occurrences: (List, elem) \(\rightarrow\) List

\section*{Sorting - Insertion sort.}
- Idea of insertion sort?
- Sort (A):
- If A has zero or one element- it is already sorted.
- Else
- sort the tail,
- insert the head at the appropriate place.
- insert-appropriate (sortedList, elem): ?
(define sort (lambda (1)
(letrec ((insert-appropriate (lambda (ll e) (cond ((empty? ll) (cons e ll))
((< e (car ll)) (cons e ll))
(else (cons (car ll) (insert-appropriate (cdr ll) e))) ) )) )
(cond ((empty? l) '())
(else (insert-appropriate (sort (cdr l)) (car l))) )) )
(sort (list 2145623 21))

\section*{Sequencing in Scheme}

Additional control constructs
- Scheme also supports an explicit sequencing operator
```

(begin (e1)
(e2)
)
(let ()
(begin
(define x 20)
(define y 22))
(+ x y))

```
```

(when test-exp e1 e2 e3)
(until test-exp e1 e2 e3)

```
- when: If the test-exp is true, execute e1, e2, e3 in sequence.
- until: If the false is false, execute e1, e2, e3 in sequence.

\section*{switch-case}
```

(let ([x 4] [y 5])
(case (+ x y)
[($$
\begin{array}{llllll}{1}&{3}&{5}&{7}&{9}\end{array}
$$) 'odd]
[(0 2 4 6 8) 'even]
[else 'out-of-range]))

```

Q: What is the difference between cond and case?

\section*{Applying a procedure}
- Goal: Given a list of arguments; apply them to an operator.
- Example: Apply "+" on ' ( \(\left.\begin{array}{ll}2 & 3\end{array}\right)\)
```

(apply + '(2 3))
(apply min '(1
(define first
(lambda (ll)
(apply (lambda (x . y) x) ll)))
(define rest
(lambda (ll)
(apply (lambda (x . y) y) ll)))
(first '(a b c d))
(rest ' (a b c d))

```

\section*{Mapping a function to a list}

Delayed execution

\section*{Q: How to define map?}
```

(define map
(lambda (f ll)
(if (empty? ll) '(
(cons (f (car ll)) (map f (cdr ll))))))
(map abs (list 2 1 4 -56 23 21)))

```

\section*{Example, delayed computation}
```

(define stream-car
(lambda (s)
(car (force s))))
(define stream-cdr
(lambda (s)
(cdr (force s))))
(define counters
(letrec ((next (lambda (n)
(delay (cons n (next (+ n 1)))))))
(next 1)))
(stream-car (stream-cdr counters)) ;
2

Example, delayed computation (contd.)

```
(define stream-add
    (lambda (s1 s2)
        (delay (cons
                            (+ (stream-car s1) (stream-car s2))
                            (stream-add (stream-cdr s1) (stream-cdr s2))))
    (define even-counters
    (stream-add counters counters))
(stream-car even-counters)
(stream-car (stream-cdr even-counters))
24
```


Folding

Fold exampls

- Folding (a.k.a. reduce or accumulate) reduces a sequence of terms to a single term.
- Requires: a binary operator, an initial (or identity) value, and a sequence.
- We can fold left or right.

```
(define (fold-right f init-val ll)
    (if (null? ll)
            init-val
            (f (car ll)
                (fold-right f init-val (cdr ll)))))
(define (fold-left f init-val ll)
        (if (null? ll)
            init-val
            (fold-left f
                    (f init-val (car ll))
                    (cdr ll))))
```


Values

(values)
(values 1) ;--- 1
(values 123) ;-- 1
2
(ff obj1 obj2 elem-of-ll)
Example (apply $\left.+1-23^{\prime}(1020)\right) \equiv\left(\begin{array}{llll}1 & -2 & 3 & 10\end{array}\right]$
20) ;--- 32
(define whoami
(lambda (l1) (apply map list li))
)
(whoami '((1) $\left.\left.\begin{array}{llll}1 & 2\end{array}\right)\left(\begin{array}{lll}4 & 5 & 6\end{array}\right)\right)$
whoami $=$ transpose
V.Krishna Nandivada (IIT Madras)

Call with values

```
(call-with-values producer consumer)
(call-with-values
    (lambda () (values 'bond 'james))
    (lambda (x y) (cons y x)))
;--- (james . bond)
```


Data Types and their Representations

- Want to define new data types.
- a specification - tells us what data (and what operations on that data) we are trying to represent.
- implementation - tells us how we do it.
- We want to arrange things so that you can change the implementation without changing the code that uses the data type (user = client; implementation = supplier/server).
- Both the specification and implementation have to deal with two things: the data and the operations on the data.
- Vital part of the implementation is the specification of how the data is represented. We will use the notation $\lceil v\rceil$ for "the representation of data ' v '.

```
\lceil n \rceil = ~ t h e ~ S c h e m e ~ i n t e g e r ~ n
(define zero 0)
(define is-zero? zero?)
(define succ (lambda (n) (+ n 1)))
(define prec (lambda (n) (- n 1)))
```


Data Representation (contd). Example 2: Finite functions

- Data specification: a function whose domain is a finite set of Scheme symbols, and whose range is unspecified.
- Specification of operation: Aka - the interface
$\begin{array}{ll}\text { empty-ff } & =\lceil\phi\rceil \\ (\text { apply-ff }\lceil f\rceil s) & =f(s) \\ \text { (extend-ff } s \vee\lceil f\rceil) & =\lceil g\rceil\end{array}$

$$
\text { where } g\left(s^{\prime}\right)= \begin{cases}v & s^{\prime}=s \\ f\left(s^{\prime}\right) & \text { Otherwise }\end{cases}
$$

- Interface gives the type of each procedure and a description of the intended behavior of each procedure.

Procedural Representation

Examples

> (define ff-1 (extend-ff 'a 1 empty-ff))
$>$ (define ff-2 (extend-ff 'b $2 \mathrm{ff}-1$))
> (define ff-3 (extend-ff 'c 3 ff-2))
$>$ (define ff-4 (extend-ff 'd $4 \mathrm{ff}-3$))
> (define ff-5 (extend-ff 'e 5 ff-4))
> ff-5
<Procedure>
> (apply-ff ff-5 'd)
4
> (apply-ff empty-ff 'c)
error in env-lookup: couldn't find c.
> (apply-ff ff-3 'd)
error in env-lookup: couldn't find d.
>(define ff-new (extend-ff 'd 6 ff-4))
> (apply-ff ff-new 'd)
> 6

Association-list Representation

Examples

$>$ (define ff-1 (extend-ff 'a 1 empty-ff))
> (define ff-2 (extend-ff 'b 2 ff-1))
$>$ (define ff-3 (extend-ff 'c $3 \mathrm{ff}-2$))
$>$ (define ff-4 (extend-ff 'd 4 ff-3))
$>\mathrm{ff}-4$
((d.4) (c. 3) (b. 2) (a . 1))
> (apply-ff ff-4 'd)
4
Useless Assignment: Specification and Implementation of Stack as a type.

Association-list Representation

```
\lceil{(s, 晶),\ldots,(sn,v
(define empty-ff '())
(define extend-ff
    (lambda (key val ff)
        (cons (cons key val) ff)))
(define apply-ff
    (lambda (alist z)
        (if (null? alist)
            (error 'env-lookup
                                    (format "couldn't find ~s" z))
            (let ((key (caar alist))
                        (val (cdar alist))
                        (ff (cdr alist)))
                (if (eq? z key) val (apply-ff ff z))))))
```


Outline

- Formalities
 - Overview

Imperative Languages
Object Oriented Languages
Functional Programming Languages

- The Scheme Language

Data types and Interpreters

- Interpreters: Stack machine
- Environments for an interpreter
- Cells for Variables
- Closures
- Recursive environments

6 Program Semantics

- Introduction
- Big Step Semantics
- Small Step Semantics

Interpreters

The complexity of Interpreters depend on the language under consideration.

- Simple/Complex
- Environments
- Cells
- Closures
- Recursive Environments

Specification of Operations

Specification for eval-action. Our VM

- What (eval-action a s) does for each possible value of a. (eval-action halt s) = (car s)
(eval-action incr; a (v w ...)) =
(eval-action a (v+1 w ...))
(eval-action add; a (v w x ...)) =
(eval-action a ((v+w) x ...))
(eval-action push v; a (w ...)) =
(eval-action a (v w ...))
(eval-action pop; a (v w ...)) =
(eval-action a (w ...))
- Is the specification complete? How to prove the same?

A Stack Machine Interpreter

Interpreter in action

(define eval-action
(lambda (action stack)
(let ((op-code (car action)))
(case op-code
((halt)
(car stack))
((incr)
(eval-action (cdr action)
(cons (+ (car stack) 1) (cdr stack))))
((add)
(eval-action (cdr action) (cons (+ (car stack) (cadr stack)) (cddr stack))))
((push)
(let ((v (cadr action)))
(eval-action (cddr action) (cons v stack))))
((pop)
(eval-action (cdr action) (cdr stack)))
(else
(error 'eval-action "unknown op-code:" op-code)))

Interpreters (contd.): Environment

- Formalities
- OverviewImperative Languages
Object Oriented Languages
(4) Functional Programming Languages
- The Scheme LanguageData types and Interpreters
- Interpreters: Stack machine
- Environments for an interpreter
- Cells for Variables
- Closures
- Recursive environmentsogram Semantics
- Introduction
- Big Step Semantics
- Small Step Semantics

Running the Interpreter

```
> (define start
    (lambda (action)
        (eval-action action '())))
> (start '(push 3 push 4 add halt))
7
```

- An environment is a finite function - that maps identifiers to values.
- Why do we need an environment?
- Specification:

$$
\begin{array}{ll}
\text { empty-Env } & =\lceil\phi\rceil \\
\text { (apply-Env }\lceil f\rceil s) & =f(s) \\
\text { (extend-Env } s v\lceil f\rceil) & =\lceil g\rceil \\
& \text { where } g\left(s^{\prime}\right)= \begin{cases}v & s^{\prime}=s \\
f\left(s^{\prime}\right) & \text { Otherwise }\end{cases}
\end{array}
$$

Environment implementation

extend-env-list
(define empty-env
(lambda () '()))
(define extend-env
(lambda (id val env)
(cons (cons id val) env)))
(define apply-env
(lambda (env id)
(if (or (null? env) (null? id))
null
(let ((key (caar env))
(val (cdar env))
(env-prime (cdr env)))
(if (eq? id key) val (apply-env env-prime id))))))
(define extend-env-list
(lambda (ids vals env) ...)

Extending an environment - let expression

```
(LetExpression (Token1 Token2 Token3
                            List Token4 Expression Token5)
    (let* ((ids (get-ids List))
            (exps (get-exprs List))
            (vals (map (lambda (Expression)
                                    (eval-Expression Expression env))
                                    exps))
            (new-env (extend-env-list ids vals env)))
    (eval-Expression Expression new-env)))
>(map cdr '((1 (1 2 3) (\begin{array}{lll}{3}&{4}&{5}\end{array})))
((2 3) (4 5))
Useless assignment: How to interpret Let*?
```

```
(define eval-Expression
    (lambda (Expression)
        (record-case Expression
            ...
                (PlusExpression (Tkn1 Tkn2 Expression1 Expression2 Tkn3)
                    (+ (eval-Expression Expression1)
                        (eval-Expression Expression2))))
            (Identifier (Token) (apply-env env Token))
            .. ))
(define run
    (lambda ()
            (record-case root
                (Goal (Expression Token)
                    (eval-Expression Expression (empty-env)))
        (else (error 'run '`Goal not found'')))))
```


Outline

(1) Introduction

- Formalities
- Overview
(2) Imperative Languages
(3) Object Oriented Languages
(4) Functional Programming Languages
- The Scheme Language
(5)

Data types and Interpreters

- Interpreters: Stack machine
- Environments for an interpreter
- Cells for Variables
- Closures
- Recursive environments
(6)

Program Semantics

- Introduction
- Big Step Semantics
- Small Step Semantics

V.Krishna Nandivada (IIT Madras)

- Parametric Polymorphism - System F

Example: Interpreting a let expression

```
(let ((x 7))
    (+ (let ((y x)
        (x (+ 2 x)))
        (* x y)) x)
```


Update to variables

- One undesirable feature of Scheme: assignment to variables.
- A variable has a name and address where it stores the value, which can be updated.
(define make-cell
(lambda (value)
(cons '*cell value)))
(define deref-cell cdr)
(define set-cell! set-cdr!)
- When we extend an environment, we will create a cell, store the initial value in the cell, and bind the identifier to the cell.
(define extend-env
(lambda (id value env)
$\quad($ cons (id (make-cell value)) env)))
V.Krishna Nandivada (IIT Madras)

Outline

- Formalities
- OverviewImperative Languages
Object Oriented Languages
(4) Functional Programming Languages
- The Scheme Language
(5) Data types and Interpreters
- Interpreters: Stack machine
- Environments for an interpreter
- Cells for Variables
- Closures
- Recursive environmentsrogram Semantics
- Introduction
- Big Step Semantics
- Small Step Semantics

```
(load "recscm.scm")
(load "records")
(load "tree")
```

To represent user-defined procedures, we will use closures

(define-record closure (formals body env))

Closures

(define eval-Expression
(lambda (Expression env)
(record-case Expression
.
(ProcedureExp (Token1 Token2 Token3
List Token4 Expression Token5) (make-closure List Expression env))
(Application (Token1 Expression List Token2) (let*
((clos (eval-Expression Expression env))
(ids (get-formals clos))
(vals (map (lambda (Exp)
(eval-Expression Exp env)
List))
(static-env (get-closure-env clos))
(new-env
(extend-env-list ids vals static-env))) (body (get-body clos))
(eval-Expression body new-env)))

Outline

- Formalities
- Overview

2) Imperative Languages
(3) Object Oriented Languages
(4) Functional Programming Languages

- The Scheme Language
-

Data types and Interpreters

- Interpreters: Stack machine
- Environments for an interpreter
- Cells for Variables
- Closures
- Recursive environments
(6)

Program Semantics

- Introduction
- Big Step Semantics
- Small Step Semantics

Recursive Environments for recursive definitions

- We need two kinds of environment records.
- Normal environments contain cells.
- A recursive environment contains a RecDeclarationList. If one looks up a recursively-defined procedure, then it gets closed in the environment frame that contains it:
(define-record normal-env (ids vals env))
(define-record rec-env (recdecl-list env))
(define eval-Expression
(lambda (Expression env)
(record-case Expression
..
(RecExpression (Token1 Token2 Token3
(eval-Expression
Expression
(make-rec-env List env)))
(else (error ...)))))

```
(define apply-env
    (lambda (env id)
        (record-case env
            (rec-env (recdecl-list old-env)
            (let ((id-list (get-ids recdecl-list)))
                (if (member? id id-list)
                            (let* ((RecProc (get-decl id recdecl-list))
                            (ProcExpr (get-proc-expr RecProc)))
                make-cell (make-closure ;; a cell
                        (get-formals ProcExpr)
                            (get-body ProcExp) env)))
                        (apply-env old-env id)))))))

\section*{Interpreters}
(a) Environment
(B) Cells
- Closures
( ( Recursive environments
© Interpreting OO (MicroJava) programs.


\section*{Introduction}
- An interpreter executes a program as per the semantics.
- An interpreter can be viewed as an executable description of the semantics of a programming language.
- Program semantics is the field concerned with the rigorous mathematical study of the meaning of programming languages and models of computation.
- Formal ways of describing the programming semantics.
- Operational semantics - execution of programs in the language is described directly (in the context of an abstract machine).
- Big-step semantics (with environments) -is close in spirit to the interpreters we have seen earlier.
- Small-step semantics (with syntactic substitution) - formalizes the inlining of a procedure call as an approach to computation.
- Denotational Semantics - each phrase in the language is translated to a denotation - a phrase in some other language.
- Axiomatic semantics - gives meaning to phrases by describing the logical axioms that apply to them.

\section*{Extension of the Lambda-calculus}
- The traditional syntax for procedures in the lambda-calculus uses the Greek letter \(\lambda\) (lambda), and the grammar for the lambda-calculus can be written as:
\(e \quad::=x|\lambda x . e| e_{1} e_{2}\)
\(x \in\) Identifier (infinite set of variables)
- Brackets are only used for grouping of expressions. Convention for saving brackets:
- that the body of a \(\lambda\)-abstraction extends "as far as possible."
- For example, \(\lambda x . x y\) is short for \(\lambda x .(x y)\) and not ( \(\lambda x . x) y\).
- Moreover, \(e_{1} e_{2} e_{3}\) is short for \(\left(e_{1} e_{2}\right) e_{3}\) and not \(e_{1}\left(e_{2} e_{3}\right)\).

We will give the semantics for the following extension of the lambda-calculus:
\(e::=x|\lambda x . e| e_{1} e_{2}|c|\) succ \(e\)
\(x \in\) Identifier (infinite set of variables)
\(c \in\) Integer

\section*{Outline}
introduction
- Formalities
- OverviewImperative Languages
(3) Object Oriented Languages
(4) Functional Programming Languages
- The Scheme Language
(5) Data types and Interpreters
- Interpreters: Stack machine
- Environments for an interpreter
- Cells for Variables
- Closures
- Recursive environments


Program Semantics
- Introduction
- Big Step Semantics
- Small Step Semantics

- Parametric Polymorphism - System F

\section*{Outline}
- Formalities
- OverviewImperative Languages
Object Oriented Languages
(4) Functional Programming Languages
- The Scheme Language
(3)

Data types and Interpreters
- Interpreters: Stack machine
- Environments for an interpreter
- Cells for Variables
- Closures
- Recursive environments
(6)

Program Semantics
- Introduction
- Big Step Semantics
- Small Step Semantics

\section*{Big step semantics}

Here is a big-step semantics with environments for the lambda-calculus.
\[
\begin{array}{lll}
w, v & \in & \text { Value } \\
v & ::= & c \mid(\lambda x . e, \rho) \\
\rho & \in & \text { Environment } \\
\rho & ::= & x_{1} \mapsto v_{1}, \cdots x_{n} \mapsto v_{n}
\end{array}
\]

The semantics is given by the following five rules:
(1)
\[
\begin{gathered}
\rho \vdash x \triangleright v(\rho(x)=v) \\
\rho \vdash \lambda x . e \triangleright(\lambda x . e, \rho) \\
\frac{\rho \vdash e_{1} \triangleright\left(\lambda x . e, \rho^{\prime}\right) \quad \rho \vdash e_{2} \triangleright v \quad \rho^{\prime}, x \mapsto v \vdash e \triangleright w}{\rho \vdash e_{1} e_{2} \triangleright w} \\
\rho \vdash c \triangleright c \\
\frac{\rho \vdash e \triangleright c_{1}}{\rho \vdash \operatorname{succ} e \triangleright c_{2}}\left\lceil c_{2}\right\rceil=\left\lceil c_{1}\right\rceil+1
\end{gathered}
\]
(5)
V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022

\section*{Small step semantics}
- In small step semantics, one step of computation = either one primitive operation, or inline one procedure call.
- We can do steps of computation in different orders:
> (define foo
(lambda (x y) (+ (* x 3) y)))
\[
>(\text { foo }(+4 \text { 1) 7) }
\]

22
Let us calculate:
```

(foo (+ 4 1) 7)
=> ((lambda (x y) (+ (* x 3) y))
(+ 4 1) 7)
=> (+ (* (+ 4 1) 3) 7)
=> 22

```
```

Small step semantics (contd.)

```
```

Free variables

```

We can also calculate like this:
```

(foo
(+ 4 1) 7)
=> (foo 5 7)
=> ((lambda (x y) (+ (* x 3) y))
5 7)
=> (+ (* 5 3) 7)
=> 22

```

A variable \(x\) occurs free in an expression \(E\) iff \(x\) is not bound in \(E\).Examples:
- no variables occur free in the expression
(lambda (y) ((lambda (x) x) y))
- the variable y occurs free in the expression
((lambda (x) x) y)
An expression is closed if it does not contain free variables. A program is a closed expression.

\section*{Methods of procedure application}

\section*{Call by name (or lazy-evaluation)}
```

((lambda (x) x)
((lambda (y) (+ y 9) 5))
=> ((lambda (y) (+ y 9)) 5)
=> (+ 5 9)
=> 14
Avoid the work if you can

- Example: Miranda and Haskell
Lazy or eager: Is one more efficient? Are both the same?

```

\section*{Difference}

\section*{Call by value - too eager?}
- Q: If we run the same program using these two semantics, can we get different results?
- A:
- If the run with call-by-value reduction terminates, then the run with call- by-name reduction terminates. (But the converse is in general false).
- If both runs terminate, then they give the same result.

Church Rosser theorem


\section*{Summary - calling convention}
- call by value is more efficient but may not terminate
- call by name may evaluate the same expression multiple times.
- Lazy languages uses - call-by-need.
- Languages like Scala allow both call by value and name! call-by- name reduction terminates.
```

 (define delta (lambda (x) (x x)))
 (delta delta)
 => (delta delta)
=> (delta delta)
=> ...

```

Consider the program:
```

(define const (lambda (y) 7))
(const (delta delta))

``` the operand.
- call by name reduction terminates.

\section*{Beta reduction} the choosing of arbitrary beta-redex. expression is called beta-reduction.
- \(\eta\) conversion: A simple optimization:

Sometimes call-by-value reduction fails to terminate, even though
- call by value reduction fails to terminate; cannot finish evaluating
- A procedure call which is ready to be "inlined" is called a beta-redex. Example ( (lambda (var) body ) rand )
- In lambda-calculus call-by-value and call-by-name reduction allow
- The process of inlining a beta-redex for some reducible
( (lambda (var) body ) rand ) -> body[var:=rand]
\[
(\lambda x(E x))=E
\]
- A conversion when applied in the left-to-right direction is called a reduction.
```

Notes on reduction

```
- Applicative order reduction - A \(\beta\) reduction can be applied only if both the operator and the operand are already values. Else?
- Applicative order reduction (call by value), example: Scheme, C, Java.

\section*{Substitution}
- The notation \(e[x:=M]\) denotes \(e\) with \(M\) substituted for every free occurrence of \(x\) in such that a way that name clashes are avoided.
- We will define \(e[x:=M]\) inductively on \(e\).
\[
\begin{array}{ll}
x[x:=M] & \equiv M \\
y[x:=M] & \equiv y(x \neq y) \\
\left(\lambda x \cdot e_{1}\right)[x:=M] & \equiv\left(\lambda x \cdot e_{1}\right) \\
\left(\lambda y \cdot e_{1}\right)[x:=M] & \equiv \lambda z\left(\left(e_{1}[y:=z]\right)[x:=M]\right) \\
& \\
& \text { (where } x \neq y \text { and } z \text { does not } \\
& \text { occur free in } \left.e_{1} \text { or } M\right) . \\
\left(e_{1} e_{2}\right)[x:=M] & \equiv\left(e_{1}[x:=M]\right)\left(e_{2}[x:=M]\right) \\
c[x:=M] & \equiv{ }^{2} \\
\left(\operatorname{succ} e_{1}\right)[x:=M] & \equiv \operatorname{succ}\left(e_{1}[x:=M]\right)
\end{array}
\]
- The renaming of a bound variable by a fresh variable is called alpha-conversion.
- Q: Can we avoid creating a new variable in the fourth rule ?

\section*{Small step semantics}

Here is a small-step semantics with syntactic substitution for the lambda-calculus.
\[
\begin{array}{lll}
v & \in & \text { Value } \\
v & ::= & c \mid \lambda x . e
\end{array}
\]

The semantics is given by the reflexive, transitive closure of the relation \(\rightarrow_{V}\)
(7)
\[
\rightarrow_{V} \subseteq \text { Expression } \times \text { Expression }
\]
(8)
\[
\begin{gather*}
\lambda x . e v \rightarrow_{V} e[x:=v]  \tag{6}\\
\frac{e_{1} \rightarrow_{V} e_{1}^{\prime}}{e_{1} e_{2} \rightarrow_{V} e_{1}^{\prime} e_{2}}
\end{gather*}
\]
\[
\frac{e_{2} \rightarrow_{V} e_{2}^{\prime}}{v e_{2} \rightarrow_{V} v e_{2}^{\prime}}
\]
(10)
\[
\begin{gather*}
\operatorname{succc}_{1} \rightarrow_{V} c_{2}\left(\left\lceil c_{2}\right\rceil=\left\lceil c_{1}\right\rceil+1\right)  \tag{9}\\
\frac{e_{1} \rightarrow V e_{2}}{\operatorname{succ}_{1} e_{V} \operatorname{succe}_{2}}
\end{gather*}
\]

\section*{Types are Ubiquitous}

What is a Type?
- A type is an invariant.
- For example, in Java
int v;
specifies that v may only contain integer values in a certain range.
- Invariant on what?
- About what?

Advantages with programs with types - three (tall?) claims:
- Readable : Types provide documentation;
"Well-typed programs are more readable".
Example: bool equal(String s1, String s2);
- Efficient: Types enable optimizations; "Well-typed programs are faster".

Example: \(\mathrm{c}=\mathrm{a}+\mathrm{b}\)
- Reliable: Types provide a safety guarantee; "Well-typed programs cannot go wrong".

Programs with no-type information can be unreadable, inefficient, and unreliable.

\section*{Simply typed lambda calculus}

\section*{Type environment}
- Types: integer types and function types.
- Grammar for the types:
\[
\tau::=\operatorname{lnt} \mid \tau_{1} \rightarrow \tau_{2}
\]
- Extend the signature of a lambda: \(\lambda x\) : \(\tau\).e-every function specifies the type of its argument.
- Examples: \(\begin{cases}0 & : \operatorname{Int} \\ \lambda x: \operatorname{lnt} .(\operatorname{succ} x) & : \operatorname{Int} \rightarrow \operatorname{Int} \\ \lambda x: \operatorname{lnt} . \lambda y: \operatorname{Int} . \text { succ } x+y & : \quad \operatorname{Int} \rightarrow \operatorname{Int} \rightarrow \operatorname{Int}\end{cases}\)
- These are simple types - each type can be viewed as a finite tree. polymorphic types, dependent types
- Infinitely many types.
- Type environment \(A\) : Var \(\rightarrow\) types.
- A type environment is a partial function which maps variables to types.
- \(\phi\) denotes the type environment with empty domain.
- Extending an environment \(A\) with \((x, t)\) - given by \(A[x: t]\)
- Application - \(A(y)\) gives the type of the variable \(y\).
- Type Evaluation: \(A \vdash e: t-e\) has type \(t\) in environment \(A\).
- Q: How to do type evaluation?

\section*{Type rules}

\section*{Type rules}
- The judgement \(A \vdash e: t\) holds, when it is derivable by a finite derivation tree using the following type rules.
\[
\begin{align*}
& A \vdash x: t(A(x)=t)  \tag{1}\\
& \frac{A[x: s] \vdash e: t}{A \vdash \lambda x: s . e: s \rightarrow t}  \tag{2}\\
& \frac{A \vdash e_{1}: s \rightarrow t, A \vdash e_{2}: s}{A \vdash e_{1} e_{2}: t}  \tag{3}\\
& A \vdash 0: \operatorname{lnt}  \tag{4}\\
& \frac{A \vdash e: \operatorname{lnt}}{A \vdash \operatorname{succ} e: \operatorname{lnt}} \tag{5}
\end{align*}
\]
- Exactly one rule for each construct in the language. Also note the axioms
- An expression \(e\) is well typed if there exist \(A, t\) such that \(A \vdash e: t\) is derivable.

\section*{Example type derivations}
- \(\phi \vdash 0\) : Int
- succ
\[
\frac{\phi[x: \ln t] \vdash x: \operatorname{lnt}}{\frac{\phi[x: \operatorname{lnt}] \vdash \operatorname{succ} x: \operatorname{lnt}}{\phi \vdash \lambda x: \operatorname{lnt} . \operatorname{succ} x: \operatorname{lnt} \rightarrow \operatorname{lnt}}}
\]
\[
\begin{align*}
& A \vdash x: t(A(x)=t)  \tag{1}\\
& \frac{A[x: s] \vdash e: t}{A \vdash \lambda x: s . e: s \rightarrow t}  \tag{2}\\
& \frac{A \vdash e_{1}: s \rightarrow t, A \vdash e_{2}: s}{A \vdash e_{1} e_{2}: t}  \tag{3}\\
& A \vdash 0: \operatorname{lnt}  \tag{4}\\
& \frac{A \vdash e: \operatorname{lnt}}{A \vdash \operatorname{succ} e: \operatorname{lnt}} \tag{5}
\end{align*}
\]

\section*{Examples of type rules}
- Identity function:
\[
\frac{\phi[x: \operatorname{lnt}] \vdash x: \operatorname{Int}}{\phi \vdash \lambda x: \operatorname{lnt} x: \operatorname{lnt} \rightarrow \operatorname{lnt}}
\]
- Apply
\[
\frac{\phi[f: s \rightarrow t][x: s] \vdash f: s \rightarrow t \quad \phi[f: s \rightarrow t][x: s] \vdash x: s}{\phi[f: s \rightarrow t][x: s] \vdash f x: t} \frac{\phi[f: s \rightarrow t] \vdash \lambda x: s . f x: s \rightarrow t}{\frac{\phi \vdash \lambda f: s \rightarrow t . \lambda x: s . f x:(s \rightarrow t) \rightarrow(s \rightarrow t)}{}}
\]

\section*{Type derivation for SKI}

\section*{SKI combinators}
- l-combinator - identity function.
- K-combinator - K , when applied to any argument \(x\) returns a constant function \(\mathbf{K} x\), which when applied to any argument \(y\) returns \(x\).
K \(x y=x\)
\[
\frac{\phi[x: s][y: t] \vdash x: s}{\frac{\phi[x: s] \vdash \lambda y: t . x: t \rightarrow s}{\phi \vdash \lambda x: s . \lambda y: t . x: s \rightarrow(t \rightarrow s)}}
\]
- S-combinator, for substitution: \(\mathbf{S} x y z=x z(y z)\)

Useless assignment - derive the type derivation for \(\mathbf{S}\) combinator.
- SKI is turing complete. Actually, SK itself is turing complete. - Self study.

\section*{Example underivable term}
- \(\operatorname{succ}(\lambda x: t . e)\)
(Recall Rule 5):
\[
\begin{gathered}
\frac{A \vdash e: \operatorname{lnt}}{A \vdash \operatorname{succ} e: \operatorname{lnt}} \\
\text { underivable } \frac{A \vdash \lambda x: \text { t.e }: \operatorname{lnt}}{A \vdash \operatorname{succ}(\lambda x: t . e): \operatorname{lnt}}
\end{gathered}
\]
- No rule to derive the hypothesis \(\phi \vdash \lambda x\) : t.e.
- \(\operatorname{succ}(\lambda x: t . e)\) has no simple type.
- \(\mathrm{SKSK} \Rightarrow \mathrm{KK}(\mathrm{SK}) \Rightarrow \mathrm{K}\)
- \(\mathrm{SKI}(\mathrm{KIS}) \Rightarrow \mathrm{SKII} \Rightarrow \mathrm{KI}(\mathrm{II}) \Rightarrow \mathrm{KII} \Rightarrow \mathrm{I}\)
- \(K S(I(S K S I)) \Rightarrow K S(I(K I(S I))) \Rightarrow K S(I(K I I)) \Rightarrow K S(I I) \Rightarrow K S I \Rightarrow S\)
- \(\mathrm{SKIK} \Rightarrow \mathrm{KK}(\mathrm{IK}) \Rightarrow \mathrm{KKK} \Rightarrow \mathrm{K}\)

\section*{Outline}
(1) IntroductionImperative LanguagesFunctional Programming LanguagesData types and İnterpretersProgram SemanticsTyped Lambda Calculus
- Simply Typed Lambda Calculus
- Parametric Polymorphism - System F V.Krishna Nandivada (IT Madras)

CS3100 - Jul 2022
- AppTwiceInt \(=\lambda f: \operatorname{Int} \rightarrow \operatorname{Int} . \lambda x: \operatorname{lnt} . f(f x)\)

AppTwiceRcd \(=\lambda f:(l: \operatorname{lnt}) \rightarrow(l: \operatorname{Int}) . \lambda x:(l: \operatorname{lnt}) \cdot f(f x)\)
AppTwiceOther =
\(\lambda f:(\operatorname{lnt} \rightarrow \operatorname{Int}) \rightarrow(\operatorname{lnt} \rightarrow \operatorname{Int}) . \lambda x:(\operatorname{lnt} \rightarrow \operatorname{lnt}) . f(f x)\)
- Breaks the idea of abstraction: Each significant piece of functionality in a program should be implemented in just one place in the source code.

\section*{Parametric Polymorphism - System F}
- System F discovered by Jean-Yves Girard (1972)
- Polymorphic lambda-calculus by John Reynolds (1974)
- Also called second-order lambda-calculus - allows quantification over types, along with terms.

\section*{Polymorphism - variations}
- Type systems allow single piece of code to be used with multiple types are collectively known as polymorphic systems.
- Variations:
- Parametric polymorphism: Single piece of code to be typed generically (also known as, let polymorphism, first-class polymorphism, or ML-style polymorphic).
- Restricts polymorphism to top-level let bindings.
- Disallows functions from taking polymorphic values as arguments.
- Uses variables in places of actual types and may instantiate with actual types if needed.
- Example: ML, Java Generics
(let ((apply lambda f. lambda a (f a)))
(let ((a (apply succ 3)))
(let ((b (apply zero? 3)))
- Ad-hoc polymorphism - allows a polymorphic value to exhibit different behaviors when viewed using different types.
- Example: function Overloading, Java inst anceof operator.
- subtype polymorphism: A single term may get many types using subsumption.
- Java 1.5 onwards admits Parametric, Ad-hoc and subtype

\section*{System F}
- Definition of System F - an extension of simply typed lambda calculus.

\section*{Lambda calculus recall}
- Lambda abstraction is used to abstract terms out of terms.
- Application is used to supply values for the abstract types.

\section*{System F}
- A mechanism for abstracting types of out terms and fill them later.
- A new form of abstraction:
- \(\lambda\) X.e - parameter is a type.
- Application - e[t]
- called type abstractions and type applications (or instantiation).
```

Type abstraction and application

```
\[
(\lambda X . e)\left[t_{1}\right] \rightarrow\left[X \rightarrow t_{1}\right] e
\]
```

Examples

- -

$$
i d=\lambda X \cdot \lambda x: X \cdot x
$$

Type of $i d: \forall X \cdot X \rightarrow X$
-

$$
\text { applyTwice }=\lambda X . \lambda f: X \rightarrow X . \lambda a: X f(f a)
$$

Type of applyTwice : $\forall X .(X \rightarrow X) \rightarrow X \rightarrow X$

```

\section*{Typing rules}
\(\bullet\)
\[
\text { type abstraction } \frac{A, X \vdash e_{1}: t_{1}}{A \vdash \lambda X . e_{1}: \forall X . t_{1}}
\]
type application \(\frac{A \vdash e_{1}: \forall X . t_{1}}{A \vdash e_{1}\left[t_{2}\right]:\left[X \rightarrow t_{2}\right] t_{1}}\)

\section*{Examples}

Polymorphic lists
- \(i d=\lambda X . \lambda x: X x\)
\(i d: \forall X . X \rightarrow X\)
type application: id [Int ] : Int \(\rightarrow\) Int
value application: \(i d[\operatorname{lnt}] 0=0:\) Int
- applyTwice \(=\lambda X . \lambda f: X \rightarrow X . \lambda a: X f(f a)\)

ApplyTwiceInts \(=\) applyTwice \([\) Int \(]\)
applyTwice \([\operatorname{Int}](\lambda x: \operatorname{Int} \operatorname{succ}(\operatorname{succ} x)) 3=7\)

Church literals

\section*{Booleans}
- \(\operatorname{tru}=\lambda t . \lambda f . t\)
- \(\mathrm{fl} \mathrm{s}=\lambda t . \lambda f . f\)
- Idea: A predicate will return tru or \(f l\).
- We can write if pred s1 else s2 as (pred s1 s2)

Building on booleans
Building pairs
- and \(=\lambda b . \lambda c . b c f l \mathrm{~s}\)
- or \(=\) ? \(\lambda b . \lambda c . b\) tru \(c\)
- not \(=\) ?

\section*{Church numerals}

\section*{Examples - derive the types}
- \(c_{0}=\lambda s . \lambda z \cdot z\)
- \(c_{1}=\lambda s . \lambda z . s z\)
- \(c_{2}=\lambda s . \lambda z . s s z\)
- \(c_{3}=\lambda s . \lambda z\) s ss \(z\)

Intuition
- Each number \(n\) is represented by a combinator \(c_{n}\).
- \(c_{n}\) takes an argument \(s\) (for successor) and \(z\) (for zero) and apply \(s\), \(n\) times, to \(z\).
- \(c_{0}\) and fls are exactly the same!
- This representation is similarto the unary representation we studies before.
- \(\operatorname{scc}=\lambda n . \lambda s . \lambda z . s(n s z)\)
- Goal: Given a program with some types.
- Infer "consistent" types of all the expressions in the program.

\section*{Definitions}
- We will stick to simple type experssions generated from the grammar:
\[
t::=t \rightarrow t|\operatorname{lnt}| \alpha
\]
where \(\alpha\) ranges over type variables.
- Example:
\[
\begin{aligned}
& ((\text { Int } \rightarrow \alpha) \rightarrow \beta)[\alpha:=\operatorname{lnt}, \beta:=(\text { Int } \rightarrow \text { Int })]=(\text { Int } \rightarrow \text { Int }) \rightarrow(\text { Int } \rightarrow \text { Int }) \\
& \\
& \quad((\text { Int } \rightarrow \alpha) \rightarrow \gamma)[\alpha:=\operatorname{lnt}, \beta:=(\text { Int } \rightarrow \alpha)]=(\text { Int } \rightarrow \text { Int }) \rightarrow \gamma
\end{aligned}
\]
- We say given a set of type equations, we say a substituion \(\sigma\) is an unifier or solution if for each of the equation of the form \(s=t, s \sigma=t \sigma\).
- Substituions can be composed:
\[
t(\sigma o \theta)=(t \sigma) \theta
\]
- A substituion \(\sigma\) is called a most general solution of an equation set provided for any other solution \(\theta\), there exists a substituon \(\tau\) such that \(\theta=\sigma o \tau\)
- Goal: To do type inference
- Given: A set of variables and literals and their possible types. - Remember: type = constraint.
- Target: Does the given set of constraints have a solution? And if so, what is the most general solution?
- Unification can be done in linear time: M. S. Paterson and M. N. Wegman, "Linear Unification", Journal of Computer and System Sciences, 16:158-167, 1978.
- We will instead present a simpler to understand, complex to run algorithm.

\section*{Unification algorithm for Type inference \\ (Hindley-Milner)}

Input: G: set of type equations (derived from a given program).

\section*{Output: Unification \(\sigma\)}
(1) failure = false; \(\sigma=\{ \}\).
(2) while \(G \neq \phi\) and \(\neg\) failure do
- Choose and remove an equation \(e\) from G. Say \(e \sigma\) is \((s=t)\).
(3) If \(s\) and \(t\) are variables, or \(s\) and \(t\) are both Int then continue.
(1) If \(s=s_{1} \rightarrow s_{2}\) and \(t=t_{1} \rightarrow t_{2}\), then \(G=G \cup\left\{s_{1}=t_{1}, s_{2}=t_{2}\right\}\).
- If ( \(s=\operatorname{lnt}\) and \(t\) is an arrow type) or vice versa then failure \(=\) true.
(1) If \(s\) is a variable that does not occur in \(t\), then \(\sigma=\sigma o[s:=t]\).
- If \(t\) is a variable that does not occur in \(s\), then \(\sigma=\sigma o[t:=s]\).
- If \(s \neq t\) and either \(s\) is a variable that occurs in \(t\) or vice versa then failure \(=\) true .
(3) end-while.
(1) if (failure = true) then output "Does not type check". Else o/p \(\sigma\).

Q: Composability helps?
Q: Cost?
\[
\begin{aligned}
& \alpha=\beta \rightarrow \operatorname{lnt} \\
& \beta=\operatorname{Int} \rightarrow \operatorname{Int} \\
& \alpha=\operatorname{lnt} \rightarrow \beta \\
& \beta=\alpha \rightarrow \mathrm{Int}
\end{aligned}
\]

\section*{"Occurs" check}

\section*{Outline}IntroductionImperative Languages
- Ensures that we get finite types.
- If we allow recursive types - the occurs check can be omitted.
- Say in \((s=t), s=A\) and \(t=A \rightarrow B\). Resulting type?
- What if we are interested in System F - what happens to the type inference? (undecidable in general)
Self study.Object Oriented LanguagesFunctional Programming LanguagesData types and InterpretersProgram Semantics
Typed Lambda Calculus

\section*{Imperative Vs Functional Vs Logic}

Ack: Slides borrowed heavily from KC@IITM.

\section*{Declarative Vs Operational}
- This Prolog program says what the sum of a list is.
- Scheme and Java programs were about how to compute the sum.
- In particular, prolog program does not define control flow through the program.
- program is a collection of facts and rules.
```

int sum(int []arr) {
int S = 0;
for (int i=0;i<arr.length;i++) {
S += arr[i];
}
}
In Scheme
(define (sum arr)
(if (empty? arr) 0 (+ (car arr) (sum (cdr arr)))))
Logic Programming

```
```

sum([],0).

```
sum([],0).
sum([H | T], N) :- sum(T,M), N is H+M.
sum([H | T], N) :- sum(T,M), N is H+M.

Facts and Rules together build up a database of relations.

\section*{Relational view of the sum program}
```

Programs = Relations, Queries? = Lookup

```

The program:
```

sum ([],0).
sum([H | T], N) :- sum(T,M), N is H+M.

```
inductively defines a table (of infinite number of rows) of relations:
\begin{tabular}{|c|c|}
\hline List & Sum \\
\hline [] & 0 \\
\hline [1] & 1 \\
\hline [1,2] & 3 \\
\hline [2] & 2 \\
\hline & \\
\hline
\end{tabular}

\section*{Why this declarative view?}
- Many problems in computer science are naturally expressed as declarative programs.
- Rule-based AI, Program Analysis (asking questions on code), Type Inference, queries on graphical programs, Uls.
But the programmer has to convert this to Von Neumann
Architecture (Input, CPU, Memory, Output).

\section*{Logic Program Can Save the Day}

Program defines a table of relations. And queries are look ups in the table!
?- \(\operatorname{sum}([1,2,3], X)\).
\(x=6\)
- Logic programming the programmer to declaratively express the program
- The compiler will figure out how to compute the answers to the queries.

Prolog \(=\) Logic (programmer) + Control (compiler)
- Is one of the first logic programming languagues
- to be precise, it is a family of languages that differ by the choice of control.
- Invented in 1972, and has many different implementations
- We will use SWI-Prolog for our study.

\section*{Prolog Terms}

Prolog programs are made up of terms.
- Constants: 1,2,3.14,robb,'House Stark', etc.
- also known as atoms.
- Variables: Always begin with a capital letter.
- X, Y, Sticks, -
- compound terms: male(robb), father(ned,robb).
- Top-function symbol/functor: male, father
- arity: Number of arguments; male \(=1\), father \(=2\).
- top function symbols also written down explicitly with arity such as male1, father2.

\section*{father(rickard, ned).}
father(rickard,brandon). father(rickard,lyanna).
father (ned, robb).
father(ned,sansa)
father(ned, arya).
Query:
?- father(ned, sansa).
Ans: True
?- father(rickard,sansa).
Ans: False

\section*{Closed World Assumption}

We know that Ned is the father of Bran.
Let us query our program.
?- father(ned,bran).
false.

\section*{Closed World Assumption:}
- Prolog only knows the fact that it has been told.
- Assumes false for everything else.
- Interesting interactions with negation (we will see this later).

So far what we have done could have been done with a relational database.
- Rules define further facts inductively from other facts and rules.
- Rules have a head and body. H:- B1, B2, B3, ..., BN
- \(H\) is true if \(B 1 \wedge B 2 \wedge \ldots \wedge B N\) is true.

Rules (example)

\section*{Existential Queries}

Q: "Who is the father of Arya?"
?- father (X, arya).
\(\mathrm{X}=\mathrm{ned}\).
Q: "Who are Robb's children?"
?- father (robb, X).
false.
```

parent(X,Y) :- father(X,Y).
ancestor(X,Y) :- parent (X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
Added 3 rule(s).

```

Observe that Z only appears on the RHS of the last rule.
```

Rules (contd).

```
```

?- ancestor(rickard,X).
X = ned ;
X = brandon ;
X = lyanna ;
X = robb ;
X = sansa ;
X = arya .

```

Define mother, cousin, uncle, aunt, sibling.

\section*{Test}

\section*{Unification}
```

material(gold).
?- valuable(gold).
material(aluminium). ?- valuable(bauxite).
process(bauxite, alumina). ?- valuable(bronze).
process(alumina,aluminium). ?- valuable(copper).
process(copper, bronze).
valuable(X) :- material(X). true.
valuable(X) :- process(X,Y), false.
valuable(Y). false.

```

At the core of how Prolog computes is Unification.
There are 3 rules for unification:
- Atoms unify if they are identical
- a and a unify, but not a and b.
(2) Variables unify with anything.
(3) Compound terms unfiy only if their top-function symbols and arities match and their arguments unify recursively.

\section*{Unification: Quiz}

Which of these unify?
(1) a \& a yes
(2) \(a \& b\) no
(3) a \& Ayes
(9) a \& Byes
(0) tree( \((, r) \& A\) yes
```

Which of these unify?
(0) tree(I,r) \& tree(B,C) yes
(2) tree(A,r) \& tree(I,C) yes
(0) tree(A,r) \& tree(A,B) yes
(0) A \& a(A) yes (mostly), occurs check disabled by default
(0) a \& a(A) no

```

\section*{Example: Natural numbers}

Consider the terms for encoding natural numbers \(N\).
- Constant: Let z be 0
- Functions: Given the natural numbers \(x\) and \(y\), let the function
- \(s(x)\) represent the successor of \(x\).
- mul \((x, y)\) represent the product of \(x\) and \(y\).
- square( \((x)\) represent the square of \(x\).

\section*{First order Logic}

\section*{Precedence of the first-order logic operators}
\[
\begin{aligned}
t \in \text { term }: & \text { constant } \mid \text { variable } \mid \text { function } \\
f, g \in \text { formulas }:= & \mathrm{p}(t 1, \text { t2, } ., \mathrm{t}) / / \mathrm{p} \text { is a predicate } \\
& \neg f|f \vee g| f \wedge g|f \rightarrow g| f \leftrightarrow g \\
& \forall X . f \mid \exists X . f, \text { where } X \text { is a variable. }
\end{aligned}
\]

Predicates on natural numbers
- even \((x)\) - the natural number is even.
- odd \((x)\) - the natural number is odd.
- prime \((x)\) - the natural number is prime.
- divides \((x, y)\) - the natural number \(x\) divides \(y\).
- le \((x, y)\) - the natural number \(x\) is less than or equal to \(y\)
- gt \((x, y)\) - the natural number \(x\) is greater than \(y\).

\section*{Inference Rules}
0
0
0 ^
- \(\rightarrow, \leftrightarrow\)
\(\forall, \exists\)
\[
(((\neg b) \wedge c) \rightarrow a)
\]
can be simplified to
\[
\neg b \wedge c \rightarrow a
\]

\section*{Interpretation}
- What we have seen so far is a syntactic study of first-order logic - Semantics = meaning of first-order logic formulas.
- Given an alphabet \(A\), from which terms are drawn from and a domain \(D\), an interpretation maps:
- each constant \(c \in A\) to an element in \(D\).
- each \(n\)-ary function \(f \in A\) to a function \(D^{n} \rightarrow D\).
- each \(n\)-ary predicate \(p \in A\) to a relation \(D_{1} \times \cdots \times D_{n}\).

\section*{Interpretation - example.}

\section*{Models}

Let us choose the domain of natural numbers \(N\) with
- The constant \(z\) maps to 0 .
- The function \(s(x)\) maps the function \(\mathrm{s}(\mathrm{X})=\mathrm{X}+1\)
- The predicate le maps to \(\leq\).

\section*{Models example}

\section*{Quiz}

Take \(f=\forall y . l e(z, y)\). The following are models for \(f\) :
- Domain \(N, z\) maps to \(0, s(x)\) maps to \(s(x)=x+1\), and le maps to \(\leq\)
- Domain \(N, \mathrm{z}\) maps to \(0, s(x)\) maps to \(s(x)=x+2\), and \(l e\) maps to \(\leq\).
- Domain \(N\), z maps to \(0, s(x)\) maps to \(s(x)=x\), and le maps to \(\leq\). whereas the following aren't:
- The integer domain \(Z\),
- Domain \(N, z\) maps to \(0, s(x)\) maps to \(s(x)=x+1\), and le maps to \(\geq\)
- A model for a set of first-order logic formulas is equivalent to the assignment to truth variables in predicate logic.
- A interpretation \(M\) for a set of first-order logic formulas \(P\) is a model for \(P\) iff every formula of \(P\) is true in \(M\).
- If \(M\) is a model for \(f\), we write \(M \models f\), which is read as "models" or "satisfies".

\section*{Interpretation Vs Model}

Models

An interpretation often (but not always) provides a way to determine the truth values of sentences in a language.

If a given interpretation assigns the value True to a sentence, the interpretation is called a model of that sentence.

A interpretation \(M\) for a set of first-order logic formulas \(P\) is a model for \(P\) iff every formula of \(P\) is true in \(M\).

Given a set of formulas \(P\), a formula \(f\) is said to be a logical consequence of \(P\) iff for every model \(M\) of \(P, M \vDash f\)

How can you prove this?
- Show that \(\neg f\) is false in every model \(M\) of \(P\).
- Equivalent to, \(P \cup \neg f\) is unsatisfiable.

A formula \(f\) is said to be valid, if it is true in every model (written as \(\vDash f\) ).
Theorem: It is undecidable whether a given first-order logic formula \(f\) is valid. that
- A set of forumulas \(P\) is said to be satisfiable if there is a model for \(M\) for \(P\).
- Some formulas do not have models. Easiest one is \(f \wedge \neg f\). - Such (set of) formulas are said to be unsatisfiable.

\section*{Restricting the Language}
- Clearly, the full first-order logic is not a practical model for computation as it is undecidable.
- How can we do better?
- Restrict the language such that the language is semi-decidable.
- A language is said to be decidable if there exists a turing machine
- accepts every string in \(L\) and
- rejects every string not in \(L\)
- A language is said to be semi-decidable if there exists a turing machine that
- accepts every string in L and
- for every string not in L , rejects it or loops forever.
- Definite clauses are such a restriction on first-order logic that is semi-decidable.
- Prolog is basically programming with definite clauses.
- In order to define definite clauses formally, we need some auxiliary definitions.

\section*{Definite Clauses and Prolog}

\section*{Consistency of Definite Clause Programs}
- Prolog facts are definite clauses with no negative literals.
- The prolog fact even \((z)\) is equivalent to
- the definite clause \(\forall z, \operatorname{even}(z) \leftarrow T\),
- where \(T\) stands for true.
- Prolog rules are definite clauses.
- The prolog rule ancestor \((X, Y)\) :- parent \((X, Z)\), ancestor \((Z, Y)\) is equivalent to
- the definite clause \(\forall x, y, z\). ancestor \((x, y) \leftarrow\) parent \((x, z) \wedge\) ancestor \((z, y)\).
- equivalent ot \(\forall x, y\), ancestor \((x, y) \leftarrow \exists z\). parent \((x, z) \wedge\) ancestor \((z, y)\).
- Every definite clause program has a model!
- Proof
- there is no way to encode negative information in definite clause programs.
- Hence, there is no way to construct an inconsistent system (such as \(f \wedge \neg f)\).
- Therefore, every definite clause program has a model.

\section*{Prolog Query Resolution}

\section*{SLD Resolution}
- Let us assume that the prolog program \(P\) is the family tree of House Stark encoded before.
- We would like to answer "is Rickard the ancestor of Robb?"
- \(q\) =ancestor (rickard, robb).
- We construct a logical statement
- \(\neg\) ancestor (rickard, robb).
which is the negation of the original question
- The system attempts to show that \(\neg\) ancestor (rickard, robb) is false in every model of \(P\).
- equivalent to showing \(P \cup \neg\) ancestor (rickard, robb) is unsatisfiable.
- Then, we can conclude that for every model \(M\) of \(P, M \models q\).
- that is, "Rickard is the ancestor of Robb".

\section*{Example Logic program}

\section*{Prolog example: Finding the last element}
last([H],H).
last([_ | T], V) :- last(T, V).
Trace it in SWI Prolog.

What happens if I ask for last([],X) ?
1. pattern match exception
2. Prolog says false.
3. Prolog says true, \(X=\) []
4. Prolog says true, \(X=\) ???.
: Ans: 2
```

is VS =

```
\(A=1+2\).
A is \(1+2\).
A is * \((3,+(1,2))\).

There is support for \(+, *, /,<,=<,>,>=\), etc.
\(\operatorname{sum}([], 0)\).
sum([H| T], N) :- \(\operatorname{sum}(T, M), N\) is \(M+H\)
\(\operatorname{sum}([], 0)\).
\(\operatorname{sum}([H \mid T], N):-\operatorname{sum}(T, M), N=M+H\)
= used for unification. is used for arithmetic equality.

\section*{Revisiting len function}
```

$\operatorname{len}([], 0)$.
$\operatorname{len}\left(\left[_\mid T\right], N\right):-\operatorname{len}(T, M), N$ is $M+1$.

```

\section*{Trace it}
len2 ([], Acc, Acc).
len2([H|T],Acc,N) :- M is Acc+1, len2(T,M,N).
Trace it

\section*{Last Call Optimization}

\section*{Prolog example.}
- This technique is applied by the prolog interpreter
- The last clause of the rule is executed as a branch and not a call.
- We can only do this if the rule is determinate up to that point. - No further choices for the rule

\section*{Choice Points}
- Choice points are locations in the search where we could take another option.
- If there are no choice points left then Prolog doesn't offer the user any more answers.

\section*{Quiz}

What does the following code do?
```

foo([],Q,Q).

```
foo([],Q,Q).
foo([H | P], Q, [H | R]) :- foo(P, Q, R).
foo([H | P], Q, [H | R]) :- foo(P, Q, R).
foo([1,2], X, [1, 2, 3, 4]).
foo([1,2], X, [1, 2, 3, 4]).
foo([1,2], [3, 4], X).
foo([1,2], [3, 4], X).
foo(X, [3, 4], [1,2,3,4]).
```

foo(X, [3, 4], [1,2,3,4]).

```

What is the result of the query len ( \(\mathrm{A}, 2\) ) ?
(1) Error due uninstantiated arithmetic expression.
(2) [ _r-]
(3) Query does not terminate.
(9) Error due to invalid arguments.

Ans: 2. Trace it.

Limiting the number of results
limit(1,len (A, 2)). \% Number of results limited to 1.

\section*{Substring in Prolog}
<-------X--------->
+----------------------------------
```

| S | |

```
+--------------------------------------1
<---------------Z------------------>

We can specify this is seemingly equivalent ways.
- prefix \(X\) of \(Z\) and suffix \(S\) of \(X\).
- suffix \(S\) of \(X\) and prefix \(X\) of \(Z\).

\section*{Prolog Queries.}
```

my_append ([],Q,Q).
my_append([H | P], Q, [H | R]) :- my_append(P, Q, R).
prefix(X,Z) :- my_append(X,Y,Z).
suffix(Y,Z) :- my_append(X,Y,Z).

Goal order may alter the answer
Goal order may change the solution.
prefix(X,[b]), suffix([a],X).
suffix([a],X), prefix(X, [b]).
Ans: first one: false.
Ans: second one: ?

Difference in search?
my_append (X, [c], Z).
Trace.
appen2 (X, [c], Z).
Trace.
limit(1, (prefix(X, [b]), suffix([a],X))).
limit(2, (prefix(X, [b]), suffix([a],X))).
Trace.

Consider the query:
my_append([], E, [a,b|E]).
Goes for an infinite loop. Why?

- In order to unify this with, append ([],Y,Y), we will unify $\mathrm{E}=$ [a,b|E],
- whose solution is $\mathrm{E}=[\mathrm{a}, \mathrm{b}, \mathrm{a}, \mathrm{b}, \mathrm{a}, \mathrm{b}, \ldots]$.
- In the name of efficiency, most prolog implementations do not check whether E appears on the RHS term.
- infinite loop on unification.

Enable Occurs check

Some Definitions

set_prolog_flag(occurs_check,true).
my_append([], E, [a, b|E]).
Returns false. Trace it.
set_prolog_flag(occurs_check,error).
Would throw an error.

Application of substitution

Composition of Substitution

- The application of substitution σ to a variable X, written as $X \sigma$ is defined as

$$
X \sigma=\left\{\begin{array}{r}
t, \text { if } X / t \in \sigma \\
X, \text { otherwise } .
\end{array}\right.
$$

Let $\sigma=\left\{X_{1} / t_{1}, X_{2} / t_{2}, \ldots X_{n} / t_{n}\right\}, E$ be a term or a formula. The application $E \sigma$ of σ to E is obtained by simultaneously replacing every occurrence of X_{i} in E with t_{i}.
Given $\sigma=\{X /[1,2], Y / Z, Z / f(a, b)\}$, and $E=f(X, Y, Z)$,
$E \sigma=f([1,2], Z, f(a, b))$.
Now, $E \sigma$ is known as an instance of E.

- A substitution is a finite set of pairs of terms
$\left\{X_{1} / t_{1}, X_{2} / t_{2}, \ldots X_{n} / t_{n}\right\}$, where
- each t_{i} is a term and
- each X_{i} is a variable
such that $X_{i} \neq t_{i}$ and $X_{i} \neq X_{j}$ if $i \neq j$.
- The empty substitution is denoted by ε.
- For example, $\sigma=\{X /[1,2], Y / Z, Z / f(a, b)\}$ is a valid substitution.

Q: What about: $\{X / Y, Y / X, Z / Z, A / a 1, A / a 2, m / n\}$
Y, Y, N, N, N, N.

Consider two substitutions θ and σ. Then, the composition is defined as $\theta \sigma$. Intuitively, we will apply the substitution θ before σ in $\theta \sigma$.

Consider $\theta=\{X / Y, Z / a\}$ and $\sigma=\{Y / X, Z / b\}$. Then, $\theta \sigma=\{Y / X, Z / a\}$.
Let $\theta=\left\{X_{1} / s_{1}, \ldots, X_{n} / s_{n}\right\}$ and $\sigma=\left\{Y_{1} / t_{1}, \ldots, Y_{n} / t_{n}\right\}$ be two substitutions. The composition $\theta \sigma$ is the set obtained from the set:

$$
\left\{X_{1} / s_{1} \sigma, \ldots, X_{n} / s_{n} \sigma, Y_{1} / t_{1}, \ldots, Y_{n} / t_{n}\right\}
$$

- by removing all $X_{i} / s_{i} \sigma$ for which X_{i} is syntactically equal to $s_{i} \sigma$ and
- by removing those Y_{i} / t_{i} for which Y_{i} is the same as some X_{j}.

Composition of Substitution

Composition of Substitution

Let θ, σ and γ be substitutions, ϵ be empty substitution, and let E by a term or a formula. Then:

- $E(\theta \sigma)=(E \theta) \sigma$
- $(\theta \sigma) \gamma=\theta(\sigma \gamma)$
- $\epsilon \theta=\theta \epsilon=\theta$.
- $\theta=\theta \theta$ iff $\operatorname{Dom}(\theta) \cap \operatorname{Range}(\theta)=\emptyset$.

In general, composition of substitutions is not commutative. For example,

$$
\{X / f(Y)\}\{Y / a\}=\{X / f(a), Y / a\} \neq\{Y / a\}\{X / f(Y)\}=\{Y / a, X / f(Y)\}
$$

Composition of Substitution

A unfier is said to be the most general unfier (mgu) of two terms if it is more general than any other unfier

Let s and t be two terms. A substitution σ is a unfier for s and t if $s \sigma$ and $t \sigma$ are syntactically equal.
Let $s=f(X, Y)$ and $t=f(g(Z), Z)$. Let $\sigma=\{X / g(Z), Y / Z\}$ and $\theta=\{X / g(a), Y / a, Z / a\}$. Both σ and θ are unfiers for s and t.

A substitution is σ is more general than another substitution θ if there exists a substitution ω such that $\theta=\sigma \omega$.

In the previous example, $\theta=\sigma\{Z / a\}$. Hence, σ is more general than θ.
of the terms.

A pair of terms may have more than one most general unifier. For example, for the terms $f(X, X)$ and $f(Y, Z)$, the unifiers $\theta=\{X / Y, Z / Y\}$ and $\sigma=\{X / Z, Y / Z\}$ are both most general unifier.
$\theta=\sigma\{Z / Y\}$ and $\sigma=\theta\{Y / Z\}$.
If the unfiers θ and σ are both mgus, then there is a substitution $\gamma=\left\{X_{1} / Y_{1}, \ldots, X_{n} / Y_{n}\right\}$ where X_{i} and Y_{i} are variables such that $\theta=\sigma \gamma$.

Intuitively, θ can be obtained from σ by renaming the variables.

Composition of Substitution

What is the mgu of $f(X, Y, Z)$ and $f(Y, Z, a)$?
(1) $\{X / a, Y / a, Z / a\}$
(2) $\{X / b, Y / b, Z / b\}$
(3) $\{X / Y, Z / Y\}$
(9) ε

Ans: 1.

Algorithm to Compute MGU

Trace the mgu algo

Given two terms T_{1} and T_{2}, output θ the mgu, if one exists, else FAIL.
Algorithm: $m g u\left(T_{1}, T_{2}\right)$.
Initialise
Substitution $\theta=\varnothing$,
Stack Σ to $T 1=$
while (Σ not empty \&\& not Failed) \{
pop $\mathrm{X}=\mathrm{Y}$ from Σ
case
is a variable that does not occur in Y : substitute Y for X in Σ and in θ
add X / Y to θ
Y is a variable that does not occur in X : substitute X for Y in Σ and in θ
add Y / X to θ
X and Y are indentical constants or variables: continue
X is $f(X 1, \ldots, X n)$ and Y is $f(Y 1, \ldots, Y n)$.
push $\mathrm{xi}=\mathrm{Yi}, \mathrm{i}=1$ to n to Σ
therwise:
Failed $=$ true
\}
If Failed $=$ true, then return FAIL else return θ

Q:	$\operatorname{mgu}(f(X, Y, Z), f(X, Y, Z))$		
	θ	\sum^{2}	Failed
Init.	ϕ	$[f(X, Y, Z)=f(X, Y, Z))]$	false
1.	ϕ	$[X=Y, X=Z, Y=a]$	false
2.	$\{X / Y\}$	$[Y=Z, Y=a]$	false
3.	$\{X / Z, Y / Z\}$	$[Z=a]$	false
4. $\{X / a, Y / a, Z / a\}$	[]	false	

Building an Abstract Interpreter to Solve Constraints

A few points about the algorithm

(1) Input. A goal G, and a program P.
(2) Output. An instance of G that is a logical consequence of P, or false otherwise.
(3) Set $\mathrm{R}=\mathrm{G}$. // resolvent
(9) while (R is not empty)
© choose a goal A from resolvent. // goal order.
(2) choose a (renamed) clause $A^{\prime} \leftarrow B_{1}, B_{2}, \cdots, B_{n}$ from $P / /$ rule order. - such that $\theta=A$ and A^{\prime} is the mgu.
(0) if no such goal and clause exist break;
(0) replace A by $B_{1}, B_{2}, \ldots B_{n}$ in R.
(0) apply theta to R and G.
(6) If R is empty, output G.
(0) Else output false.

- The algorithm is non-deterministic.
- The abstract interpreter does not explicitly encode backtracking (recover from bad choices) and choice points (present more than one result).
- The program is said to be deterministic, if there is exactly one clause from the program to reduce each goal.
- No backtracking and choice points are necessary.

Back to Prolog

Queues using open lists

- A queue is represented by $q(L, E)$, where
- L is be an open list
- E is some suffix (end-marker) of L.
- The contents of the queue are the elements in L that are not in E.
- We will use predicates enter and leave to capture elements entering and leaving the queue.
- enter(a, $\mathrm{Q}, \mathrm{R})$: when an element a enters the queue Q , we get the queue R.
- leave (a, Q, R) : when an element a leaves the queue Q, we get the queue R.

Queue

Deficient Queues

Interestingly, the implementation also works where arbitrary elements are first popped and then unfied with elements pushed later.

Motivating Difference Lists

Recall

```
append([],Q,Q)
append([H | P], Q, [H | R]) :- append(P,Q,R).
If L1=[1, 2, 3] and L2=[4,5,6], append(L1, L2, X)?
Q: If
L1 = [1,2,3 | A]
L2 = [4,5,6 | B]
append(L1, L2, X) will derive X = [1, 2, 3, 4, 5, 6|B].
```

```
setup(q(X,X)).
leave(A, q(X,Z), q(Y,Z)) :- X = [A | Y].
enter(A, q(X,Y), q(X,Z)) :- Y = [A | Z].
wrapup(q([],[])) . % empty queue
```


Can be compacted to:

```
\(\operatorname{setup}(q(X, X))\).
leave (A, \(q([A \mid Y], Z), q(Y, Z))\).
enter \((A, q(X,[A \mid Z]), q(X, Z))\).
wrapup (q([], [])). \% empty queue
```

```
?- setup(Q), enter(a,Q,R), enter(b,R,S),
    leave(X,S,T), leave(Y,T,U), wrapup(U).
Q = q([a, b], [a, b]),
R = q([a, b], [b]),
S = q([a, b], []),
X = a,
T = q([b], []),
Y = b,
U = q([], []).
```

Q: What are the lengths of $\mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U}$? $0,1,2,1,0$.

Compacting the Queues

```
```

?- setup(Q), leave(X,Q,R), leave(Y,R,S),

```
```

?- setup(Q), leave(X,Q,R), leave(Y,R,S),
enter(a,S,T), enter(b,T,U), wrapup(U).
enter(a,S,T), enter(b,T,U), wrapup(U).
Q = q([a, b], [a, b]),
Q = q([a, b], [a, b]),
X = a,
X = a,
R = q([b], [a, b]),
R = q([b], [a, b]),
Y = b,
Y = b,
S = q([], [a, b]),
S = q([], [a, b]),
T = q([], [b]),
T = q([], [b]),
U = q([], []).

```
```

U = q([], []).

```
```

What is the length of Q, R, S, T, and U ? $0,-1,-2,-1,0$

Take from a List

take (HasX, X, NoX) removes exactly one element X from the list HasX with the result list being NoX.

```
take([H|T],H,T).
take([H|T],R,[H|S]) :- take(T,R,S).
```

Read the second clause as, "Given a list [H|T] you can take R from the list and leave $[\mathrm{H} \mid \mathrm{S}$] if you can take R from T and leave S ".
?- take ([1, 2, 3], 1, Y).
?- take ([2,3],1,X).
?- take([1,2,3,1],X,Y).
Trace
perm([], []).

V.Krishna Nandivada (IIT Madras)

Sort a list

```
permsort(L,SL) :- perm(L,SL), sorted(SL).
?- permsort([1,3,5,2,4,6], SL).
```

Too expensive to generate all permutations and search.

Cut Operator

Using Cut operator

// From geeksforgeeks

- In Prolog, the cut (!) is a special operator with two features:
- Always succeeds.
- Cannot be backtracked.

```
max_element(X, Y, X) :- X > Y.
max_element(X, Y, Y) :- X =< Y.
```

Execute max_element (5, 2, Ans).
Does not stop after checking the first rule.

One more example with Cut

```
is_member1(X, [X | _]).
% If the head of the list is X
is_member1(X, [_ | Rest]) :- is_memberl(X, Rest).
% else recur for the rest of the list
Vs
is_member2(X, [X | _]) :- !.
% If the head of the list is X
is_member2(X, [_ | Rest]) :- is_member2(X, Rest).
% else recur for the rest of the list
```


Cut operation continued

```
eval(plus(A,B),C) :- eval(A,VA), eval(B,VB), C is VA + VB.
eval(mult(A,B),C) :- eval(A,VA), eval(B,VB), C is VA * VB.
eval(A,A).
?- eval(plus(1,mult(4,5)),X).
```

eval2(plus (A, B) , C) : - !, eval2(A,VA), eval2(B,VB),
C is VA + VB.
eval2 (mult (A, B) , C) :- !, eval2 (A,VA), eval2(B,VB),
C is VA * VB.
eval2 (A, A).
?- eval2(plus(1,mult (4,5)), X).

```
p := a, !, b.
p :- c.
```

(1) 1. $p \leftrightarrow(a \wedge b) \vee c$.
(2) 1. $p \leftrightarrow(a \wedge b) \wedge c$.
(3) 1. $p \leftrightarrow(a \wedge b) \vee(\neg a \wedge c)$.
(9) 1. $p \leftrightarrow a \wedge(b \vee c)$.

Ans: 3 Since the cut above changes the logical meaning of the program, it is known as Red cut.

```
split([],[],[]).
split([H|T],[H|L],R) :- H < 5, !, split(T,L,R).
split([H|T],L,[H|R]) :- H >= 5, split(T,L,R).
```

The cut in split does not change the logical meaning of the program. Hence, it is called Green cut.

