Academic Formalities

@ Programming assignments = 4 x 08 marks,
@ Project = 08 marks.
@ Quiz 1 = Quiz 2 = 15 marks, Final = 30 marks. Absolute grading.

i i @ Extra marks
CS3100 Paradlgms of Programmlng Languages e During the lecture time - individuals can get additional 5 marks.
Introduction e How? - Ask a good question, answer a chosen question, make a

good point! Take 0.5 marks each. Max one mark per day per
person.

V. Krishna Nandivada @ Attendance requirement — as per institute norms. Non compliance

will lead to ‘W’ grade.
IIT Madras e Proxy attendance - is not a help; actually a disservice.

@ Plagiarism - A good word to know. A bad act to own.
o Will be automatically referred to the institute welfare and
disciplinary committee.
Contact (Anytime) :
Instructor: Krishna, Email: nvk@iitm.ac.in, Office: SSB 406.)
TAs : Ramya K, Omkar D, Shashin H, Kranti |, Aoukhsana V C, Nile§
T, Poorbi M D, Rutuj K K, G Mahesh.

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 2/171
What, When and Why of Paradigms of Prog. (Langs) Course outline

@ What:

e Paradigm: A typical example or pattern.
e Paradigms of Programming: Different patterns in Programming
(languages)
A rough outline (we may not strictly stick to this).
@ When?

o When the first programming language was born. 22 @ Introduction to different paradigms of programming.

@ Plankalkiili, by Konrad Zuse, 1942 (not implemented at that time). @ Lambda calculus and functional programming.

@ Short Code, John Mauchly 1950 (first implemented language). ° : :

@ Fortran, John Backus and team, 1954 (first widely available GP Logic programming _
language+compiler) @ Concurrent programming.

@ Why? Study? @ Advanced topics (depending on time).

e A programming language is an artificial language designed to
communicate instructions to a machine, particularly a computer.
e Get understanding of the intrinsic properties behind comp. langs.
e Understand the relationships between the plethora of languages
that you know/will learn. Vi
e Handy, if you care about the languages that you use/will learn. ¥

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 3/171 V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 4/171

Your friends: Languages and Tools

Start exploring
@ Java/C++ familiarity a must. Get set. Ready steady go!
@ Scheme - functional language
@ Prolog - logic programming language
@ Find the course webpage:
http://www.cse.iitm.ac.in/~krishna/cs3100/

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 5/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 6/171
Expectations A single instruction programming language

What qualities are important in a programming language? subleq a, b, c ; Mem[b] = Mem[b] - Mem[a]

@ Should be easy to express the program logic. ; if Mem[b] <= 0 goto c

@ Should reduce programming errors.

O Code should run fast. e If the optional third argument is missing:

© Should support modular compilation. e the target branch is the address of the following instruction.

g Should help in thinking... subleq a, b

Each of these shapes your expectations about this course

subleq a, b, L1
Ll:

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 7/171 V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 8/171

What does this program do? What does this program do?

Assume that Mem [z] contains zero.

subleq b, b
subleq a, =z add a, b

subleq z, b
Mem[b] = Mem([a] ; copy a, b

@ One instruction set computer - read more about its power.

subleq z, z

Mem[b] = Mem[a] + Mem[b] ; add a, b

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 9/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 10/171

So many languages to choose from. .. A timeline of programming languages

ActionScript

JavaScript

Prolog

Plankalkiil Autccode LisP BASIC Pascal Python m Groovy Rust
@ What all languages do you know? m = l T E r
@ Why are there so many languages?
@ Has the last language already been developed? BRI 4

by
960 1970 1980 199 2000 2010

PLA c Ada c# Dart
Kotlin

Short Code FORTRAN

| ALGOL |

Ruby Scratch

Simula ‘ Smalltalk | Objective-C

Haskell [| Visual Basic Scala

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 11/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 12/171

New languages keep getting developed What is the goal of CS31007

There was no Not necessarily to learn new Ianguag(.as. But to |
o Java 30 years back. @ Understand the concepts that valid across multiple languages.

@ C# 20 years back @ Programming paradigms.

o Rust 15 years back @ Learn to a bit on how to design and implement languages.

@ Webassembly 5 years back. @ Understand the difference between the syntax and fundamental
features.

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 13/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 14/171

Programiming Language Description

A computer language is defined in two dimensions:
@ Syntax
o Lexical
@ What is the difference between compilation and interpretation? e Syntactic

@ Semantics
Example:

x =3+ vy;

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 15/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 16/171

Difference between Syntax and Semantics Valid semantics: Type checking a program

@ A program is a closed expression.

@ Valid types: Int and Bool
Consider an expression language:

0:1Int
e := 0 | true | false
| succ e | 1f e then e else e | e == e
Values in the language: -
@ 0, succ 0, succ succ 0 etc, false : Bool
@ Short form §9, !, 52, §3, ...
@ Numerals: 0,1, 2,3, ...
@ true,and false
true : Bool

Valid semanis: Type checking a prograrn (cont)

el :Int e2:Int . .
el —— ¢2 - Bool @ Interpretation of a program is the step by step procedure to

reduce a given program to a value.

Interpretation of a program in our expression language
e—e

el : Bool e2:Bool succ S
el == e2 : Bool
) el —el’
equality 1 ,
el==e2 —el'==¢2
e:Int
. li
succ e: Int equality 2 el = el :
yv=—cel wv==cr¢el
equality 3————
e:Bool el:t e2:t v==v— true

if ethenel elsee2:t ,
v=_8" V=8 m#mn

v==vV — false

equality 4

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 19/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 20/171

Semantics (cont.) Semantics (cont.)

equality 5 if 1 e— e

true ==true — true ifethenel elsee2 = if e thenel else e2
equality 6
quaiity false==false — true

if 2 —

equality 7 if true thenel else e2 — el

true == false — false

lity 8

equalily false==true — false

if 3 —
if false thenel elsee2 —e2
V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 21/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 22/171

Exercise Imperative Programming

Consider a simple calculator language:

P :=D S
D := Type Id; D | e @ Each program has state.
o state = Memory/Storage
Type := int | float @ Program consists of a series of actions.
@ Each action may change the state of the program.
S = Assignment | Expr @ imperative program: describes how a program operates step by
. step.
Assignment := Id = Expr
Expr := Id + Expr | Id - Expr |

Id » Expr | Id / Expr | Constant

Write type rules. Write the operational semantics.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 23/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 24/171

Well understood constructs Ambiguous operator

@ Assignment

o X=Y
) X=&y
@ X=¢
=Ale]orx="*
: Zh]igoré(=§ let x = Amb (1, 2, 3)
@ Conditional: iekt) y = Amb(;, 6, 4, 5)
* =
e if-then i (x y)
o if-then-else print x, y

e switch-case

e Ambiguous operator
@ Loops:

e for

e while

e do-while

e break/continue

One can use Amb operator to non-deterministically make a choice.
Remember simulating an NFA.

@ Functions: calls and return.

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 25/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 26/171

Fun fact with cont inue operator. Fun code with loops

i=2; flag = 0;
do{
R— What is the use of code of the following form?
flag = flag | (1 % 2);
if (flag) continue;
printf("i = %d, flag = %d, ", i, flag);

do {

} while (i > 0); } while (false);

: ?
Q: Output of the program’ We can use conditional break statements to jump out of the loop;

@ Infinite loop Avoids goto statements.
Qi=1flag=1,
Qi=1,flag=1,i=0,flag=1,

© No output

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 27/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 28/171

Fun code with loops

Consider a Java loop nest of the following form:

for (il...)
for (i2...)
for (i3...)

for (ik...){

if (cl)
exit out of il loop
if (c2)

proceed with the next iteration of i2 loop

}

How to write such code? Goto statements
Using flag variables
break/continue with label.

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 29/171

Pascal Variant records

type kind = (i, £, c); (» An enumeration type x)
node = record (* Has intuitively two fields:
"k" and one of the remaining 3 «x)
case k: kind of

i: (ii: integer);

f: (ff: float);

c: (cc: char);
end;

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 31/171

Variant records

@ Background: Each C struct has many fields.
@ Background: size of struct = sum of size of all the fields.
@ C Union:
union ifc_type {
int ii;
float ff;
char cc;

bi

union ifc_type x;
@ How to know what does x contain?

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 30/171

Method calls (brief recollection)

@ Parameter passing convention: Call-by value, call-by reference,
textual substitution.

@ C/Java supports call-by value semantics.
@ C++ supports call-by reference.
@ C macros support textual substitution.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 32/171

Tail calls and their impact lllustration of tail call elimination

int search(int low, int high, int T, int X[]) {
int k;
if (low > high) return -1; // NOT found
k = (low + high) / 2;
if (T == X[k]) return k;

@ When the last statement executed in the body of a function is a

: . o E P lse if (T < X[k t h (low, k-1, T, X);
call, such a function-call is called a “tail-call”. else if ([k]) return search (low

)i
else if (T > X[k]) return search (k+1, high, T, X);

@ A function (or a program) is said to be in tail-call form, if every call }
ISIntheta”posmon' int search(int low, int high, int T, int XI[]){
@ A tail-call can be replaced by a jump! int k;
@ A lot of impact can be seen in tail-recursive functions. Loop: ,
if (low > high) return -1; // NOT found
k = (low + high) / 2;
if (T == [k]) return k;

else if (T < X[k]) {high = k-1;}
else if (T > X[k]) {low = k+1;}
goto Loop;

}

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 33/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 34/171

Scheme Language

An interpreted language.
A sample session: (the shell evaluates expressions)

S mzscheme

e Functional Programming Languages Welcome to Racket v5.2. > (define 1 " (a b c))
@ The Scheme Language > 3 >
5 (a b)
> fi "+ 1
>+ 13 ” (define u ' (+ x 1))
4 u
> 7' (a b c) rox)
> (define u (+ x 1))
(a b c) > x
> (define x 3) 3
> x 3 s> u
> (+ x 1) 4
4
>

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 35/171 V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 36/171

Procedures

Creating procedures with lambda: (lambda (x) body)

> (lambda (x) (+ x 1))
#<procedure>
> ((lambda (x) (+ x 1)) 4)

(define mysucc (lambda (x) (+ x 1)))
(mysucc 4)

(define myplus (lambda (x y) (+ x vy)))
(myplus 3 4)

((lambda (x y) (+ x y)) 3 4)

~ VvV JV V. orv Vv o

Procedures can take other procedures as arguments:

> ((lambda (f x) (f x 3)) myplus 5)
8

Q: How are C pointers different than a lambda?

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 37/171

Kinds of data

@ Basic values = Symbols U Numbers U Strings U Lists

@ Symbols: sequence of letters and digits starting with a letter. The
sequence can also include other symbols, such as -,$,=,*,/,?, .
Numbers: integers, etc.

@ Strings: "this is a string”

@ Lists:

@ the empty list is a list ()
@ asequence (sq,---s,) where each s; is a value (either a symbol,
number, string, or list)
© nothing is a list unless it can be shown to be a list by rules (1) and
(2).
This is an inductive definition, which will play an important part in
our reasoning. We will often solve problems (e.g., write
procedures on lists) by following this inductive definition.

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 39/171

Procedures (contd)

Procedures can return other procedures; this is called Currying:

> (define twice
(lambda (f)
(lambda (x)
(f (£ x)))))

> (define add2 (twice (lambda (x) (+ x 1))))

> (addz 5)

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 38/171

List Processing

Basic operations on lists:
@ car:iflis (s;---s,),then (car 1) iss.
e The car of the empty list is undefined.
> (define 1 ' (a b c¢))
> (car 1)
> a
@ cdr:iflis (s1 s2--- s,),then (cdr 1) is (sp --- s,).
e The cdr of the empty list is undefined.
> (cdr 1)
> (b ¢)
Combining car and cdr:
> (car (cdr 1))

(
b
(
(

vV V V

cdr (cdr 1))
c)

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 40/171

Building lists Genesis of the names

@ Lisp was originally implemented on the IBM 704 computer, in the
late 1950s.
@ The 704 hardware had special support for splitting a 36-bit
@ cons: if visthe value s, and 1 is the list (s1---s,), then (cons s machln? word into fgur parts. .
is the list (v s; -+ 5,). Q arl address part E)f flftleen blt§,
1) 1s 1 n @ a’decrement part” of fifteen bits,

@ cons builds a list whose car is s and whose cdr is 1. @ a ’prefix part” of three bits,
(car (cons s 1)) = v Q a’tag part” of three bits. .
_ @ Precursors to Lisp included functions:
(cdr (cons s 1)) =1

@ car = "Contents of the Address part of Register number”,
@ cdr = "Contents of the Decrement part of Register number”,
© cpr ="Contents of the Prefix part of Register number”,

cdr : list -> list © ctr = "Contents of the Tag part of Register number”.

@ The alternate first and last are sometimes more preferred.
But car and cdr have some advantages: short and
compositions.

e cadr = car cdr, caadr = car car cdr, cddr = cdr cdr

@ cons = constructs memory objects.

cons : value * list -> list
car : list —> wvalue

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 41/171 V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 42/171

Boolean related Building boolean predicates

Literals:
#t, #f
Predicates:

number? s)
symbol? s)

number? 3)

@ We can build complex boolean expressions:
symbol? "a)

((
((
(string? s) (string? "Hello") (and v1 v2)
(null? s) (null? 7’ ())
1 ? 1 2 7
(pair? s) (pair? (a b)) (or vl v2)
(egq? sl s2) —-— works on symbols (eg? "(a b) "(a b))
(eg? "a ’"a)
(eg? "a" "a") (not Vl)
(equal? sl s2) —-- recursive (equal? "a" "a")
(= nl n2) —-— works on numbers (= 2 2)
(zero? n) (zero? x)
(> nl n2) (> 3 2)
Conditional:
(1f bool el e2)
V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 43/171

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 44/171

Some special functions Recursive Procedures

Scheme supports and, or, not etc for making complex boolean
expressions.
How to define them using what we already know?

(define (not x)

(1f x #£ #t)) @ Say we want to write the power function: e(n,x) = x".
. @ e(n,x) =xxe(n—1,x)
(define (and x vy)

(if x y #f)) @ At each stage, we used the fact that we have the problem solved

for smaller » — Induction.

(define (or x vy)
(if x #t y))

?

/I Not exactly

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 45/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 46/171

Recursive procedures Structural Induction

(define e

(lambda (n x) @ The Moral: If we can reduce the problem to a smaller
(1f (zero? n) subproblem, then we can call the procedure itself (“recursively”) to
- solve the smaller subproblem.

(x >(< @ Then, as we call the procedure, we ask it to work on smaller and

smaller subproblems, so eventually we will ask it about something

Why does this work? Let’s prove it works for any n, by induction on n: that it can solve directly (eg n=0, the basis step), and then it will
terminate successfully.

e (=n1l) x)))))

@ It surely works for n=0.

© Now assume (for the moment) that it works when n = k. Then it
works when n=k+1. Why? Because (e n x) = (* x (e k
x)), and we know e works when its first argument is k. So it gives
the right answer when its first argumentis k + 1.

@ Principle of structural induction: If you always recur on smaller
problems, then your procedure is sure to work.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 47/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 48/171

Recursive procedures Loops

(define fact

(lambda (n)
(if (zero? n) 1 (» n (fact (- n 1))))))
Java Scheme
(fact 4) = (* 4 (fact 3)) int fact (int n) { (define fact-iter
= (x 4 (x 3 (fact 2))) int a=1; (lambda “v
= (x 4 (x 3 (x 2 (fact 1)))) while (n!=0) { (fact—-iter—-acc n 1)))
i (» 4 (= i (% ; (» 1 (fact 0))))) a=nx*a; (define fact-iter—acc
= (x 4 (% (x (» 1.1)))) n=n-1; (lambda (n a)
= (x4 (» 3 (x 2 1))) } (if (zero? n)
= (x4 (» 3 2)) a
= (x 4 6) return a; (fact-iter—-acc (- n 1)
= 24 } (x n a)))))
@ Each call of fact is made with a promise that the value returned will be Q: Is it not a recursive function?
multiplied by the value of n at the time of the call; and
@ thus fact is invoked in larger and larger control contexts as the
calculation proceeds.
V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 49/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 50/171

(fact—-iter 4)

= (fact-iter-acc 4 1)

= (fact-iter-acc 3 4)

= (fact-iter—-acc 2 12)

= (fact-iter—-acc 1 24)

= (fact—-iter—-acc 0 24) (cond (cond

= 24 (testl expl) ((equal? x 1) 'one)

2 2
(test2 exp2) ((equal? x 2) 'two)

@ fact-iter-acc is always invoked in the same context (in this (else ’large))

case, no context at all). (else exp_n))
® When fact-iter—acc calls itself, it does so at the "tail end”
of a call to fact- iter-acc. That is, no promise is made to do
anything with the returned value other than return it as the result
of the call to fact-iter-acc.
@ Thus each step in the derivation above has the form
(fact—-iter—-acc n a).

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 51/171 V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 52/171

Let

When we need local names, we use the special form let:

(let ((varl wvall)
(var2 val2)

-)

exp)
(let ((x 3)

(y 4))
(» x vy))

(let ((x 3))
(let ((f

(+ x 3))

(x 4))
(+ x £)))

V.Krishna Nandivada (lIT Madras)

Local recursive procedures

CS3100 - Jul 2022

53/171

The scope of fact-iter-acc doesn’t include it’s definition. Instead, we can use letrec:

(letrec
((namel procl)
(name2 proc2)
L)
body)

letrec creates a set of mutually recursive procedures and makes their names

available in the body. So we can write:

(define fact-iter
(lambda (n)

(letrec ((fact—-iter-acc
(lambda (n a)
(1f (zero? n) a

))))

(fact—-iter—-acc (- n

(* n

(fact-iter-acc n 1))))

V.Krishna Nandivada (IIT Madras)

CS3100 - Jul 2022

55/171

Limitations of let

Scheme
(define fact-iter
(lambda (n)
(fact-iter-acc n 1)))

(define fact-iter-acc
(lambda (n a)
(if (zero? n) a
(fact—iter—-acc (- n 1) (x n a)))))

Can we write a local recursive procedure?

(define fact-iter
(lambda (n)
(let ((fact-iter-acc
(lambda (n a)
(1f (zero? n)
a
(fact-iter—-acc (- n 1) (x n a))))))
(fact—-iter—-acc n 1))))

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 54/171

Revise the scope of let and letrec

(let (varl expl) (var2 exp2) S3)

varl is visible inside S.
var?2 is visible inside S.

(letrec (varl expl) (var2 exp2) S3)

varl is visible in expl, exp2, and S.
var2 is visible in expl, exp2, and S.

One requirement: no reference be made to varl and var2 during the
evaluation of exp1, and exp2.

This requirement is easily met if expl and/or exp2 are lambda
expressions - reference to the variables varl and var2 are evaluated
only only when the resulting procedure is invoked.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 56/171

Examples with let and letrec Argument sequencing

(letrec ((x (+ x 1))) x) —— undefined.
(let ((x 3)) Arguments are evaluated before procedure bodies.
(letrec ((x (+ x 1))) x)) —-—- undefined. @ In ((lambda (x y z) body) expl exp2 exp3)
(letrec ((x y) (y 1)) %) -- undefined exp1, exp2, and exp3 are guaranteed to be evaluated before body,
(letrec ((x (lambda () (+ v 1))) (v 3)) (x)) oy but we don’t know in what order exp1, exp2, and exp3 are going to
Y Y be evaluated, but they will all be evaluated before body.
(let ((x 2)) @ This is precisely the same as
(let ((x 3)) (let ((x expl) (y exp2) (z exp3)) body)
(let ((y (+ x 4)))
Gxy))) =2l In both cases, we evaluate exp1, exp2, and exp3, and then we
evaluate body in an environment in which x, y, and z are bound to
(let ((x 2)) the values of exp1, exp2, and exp3.
(let ((x 3)
(y (+ x 4)))
(» x y))) = 18
V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 57/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 58/171

Sample Problem Sample problem (contd).

Q: Find the maximum number in a list.

A: Define a function that takes one argument (A list of numbers) and

returns the largest element.

A: Write the recursive definition first. (define (largest2 nums)

(define largest (cond ((empty? (cdr nums)) (car nums))

(letrec ((largest-ele (else
(lambda (11 e) (cond ((>= (car nums) (largest2 (cdr nums)))
(if (empty? 11) (car nums))
e (else
(1f (>= e (car 11)) (largest2 (cdr nums))))
(largest—-ele (cdr 11) e))))

(largest—-ele (cdr 11) (car 11)))))))
(lambda (11)
(if (empty? 11)
"Empty-list
(largest-ele (cdr 11) (car 11))))))

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 59/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 60/171

Practice problems (with and without using letrec)

@ Find the 'n’ the element in a given list. (Input: a list and n. Output:
error or the n’th element)

@ symbol-only? — checks if a given list contains only symbols.
List — boolean

member?: (List, element) — boolean
remove-first: List — List

replace-first: (List, elem) — List
remove-first-occurrence: (List, elem) — List
remove-all-occurrences: (List, elem) — List

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 61/171

Sorting - Insertion sort.

@ Idea of insertion sort?
@ Sort (A):
o If A has zero or one element- it is already sorted.
o Else
@ sort the talil,
@ insert the head at the appropriate place.
e insert-appropriate (sortedList, elem): ?

(define sort (lambda (1)

(letrec ((insert-appropriate (lambda (11 e)
(cond ((empty? 11) (cons e 11))
((< e (car 11)) (cons e 11))
(else (cons (car 1l1) (insert-appropriate (cdr 11) e)))

))))
(cond ((empty? 1) " ())
(else (insert-appropriate (sort (cdr 1)) (car 1)))

))))

(sort (list 2 1 4 56 23 21))

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 63/171

@ Recall:
o Create two halves.
o Sort both halves
o Merge

(define (merge listl 1list2)
(cond

((null? 1listl) 1list2)
((null? 1list2) 1listl)
(else
(let ((f1 (car listl))
(f2 (car list2)))

(if (<= f1 £2)
(cons fl (merge (cdr listl) list2))
(cons f2 (merge listl (cdr 1list2)))

(merge (list 1 2 3 10) " (7 8 9))

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 62/171

Sequencing in Scheme

@ A common idiom in C/Java type of languages is specifying a
sequence of statements.

6,9

@ Sequencing using “;” is just a syntactic sugar!

@ Can we simulate “;” operator using the scheme syntax we have
learned so far?

S1; = (let ((x (S1)))
S2 (52))

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 64/171

Sequencing in Scheme Additional control constructs

@ Scheme also supports an explicit sequencing operator

(begin (el)

(when test-exp el e2 e3)

(e2)

) (until test-exp el e2 e3)

(let () . .

(begin @ when: If the test—-exp is true, execute e1, e2, €3 in sequence.

(define x 20) @ until: Ifthe false is false, execute e1, e2, €3 in sequence.
(define y 22))
(+ x vy))

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 65/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 66/171

Applying a procedure

@ Goal: Given a list of arguments; apply them to an operator.
@ Example: Apply “+"on 7 (2 3)

(apply + " (2 3))

(let ([x 4] [y 5]) (apply min ’ (1 8 0 2 5))
(case (+ x V)
[(1 35 7 9) ’"odd] (define first
[(0O 2 4 6 8) "even] (lambda (11)
[else 'out-of-rangel])) (apply (lambda (x . y) x) 11)))
Q: What is the difference between cond and case? (define rest

(lambda (11)
(apply (lambda (x . y) y) 11)))

(first "(a b c d))

(rest " (a b c d))

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 67/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 68/171

Mapping a function to a list Delayed execution

(map abs (1 -2 3 -4 5 -6))
(delay expr) ; create a promise, won’t be evaluated,

. H 9]
Q: How to define map? ; till it is "forced".

(define map .
(lambda (f 11) (force promise-expr) ; evaluate the expression, first time.

(if (empty? 11) ' (; Memoize after that.

(cons (f (car 11)) (map £ (cdr 11))))))
(map abs (list 2 1 4 -56 23 21)))

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 69/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 70/171

Example, delayed computation Example, delayed computation (contd.)

(define stream-car

(lambda (s) (define stream-add
(car (force s)))) (lambda (sl s2)
(delay (cons
(define stream-cdr (+ (stream-car sl) (stream-car s2))
(lambda (s) (stream—add (stream-cdr sl) (stream-cdr s2))))

(cdr (force s))))

(define even-counters

(define counters (stream—-add counters counters))
(letrec ((next (lambda (n)
(delay (cons n (next (+ n 1))))))) (stream-car even-counters)
(next 1))) (stream—-car (stream—-cdr even-—-counters))
(stream-car (stream—-cdr counters)) ; P 2 4

2

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 avavs V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 72/171

Folding

@ Folding (a.k.a. reduce or accumulate) reduces a sequence of
terms to a single term.

@ Requires: a binary operator, an initial (or identity) value, and a
sequence.

@ We can fold left or right.

(define (fold-right f init-val 11)
(if (null? 11)
init-val
(f (car 11)
(fold-right f init-val (cdr 11)))))

(define (fold-left f init-val 11)
(if (null? 11)
init-val
(fold-left f
(f init-val (car 11))
(cdr 11))))

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 73/171

Map vs Apply

@ Map (map ff 11) :Invoke £f on each element of 11 and return
a list containing the results of each such invocation.

e Example: (map + 7 (1 2) " (3 4)) ;i —"' (4 6)

@ Apply (apply f£f 11): Invoke ff by passing arguments given
asalistin11.

@ Another form of Apply: (apply ff objl obj2 ...list) =
(ff objl obj2 elem-of-11)

e Example (apply + 1 -2 3 7 (10 20)) =(+ 1 -2 3 10
20) ;——— 32

(define whoami
(lambda (11)
(apply map list 11))

(whoami 7 ((1 2 3) (4 5 6)))

whoami = transpose

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 75/171

Fold exampls

(fold-right + 0 (1 2 3 4))
(fold-left = 0 " (1 2 3 4))

(+1 (+2 (+3 (+40))))
(= (= (= (=01) 2) 3) 4)

(fold-left
(lambda (a . args) (append args a))
")
" (question the is be to not or be to))

to be or not to be is the question

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 74/171

Values

(values)

(values 1) ;—— 1

(values 1 2 3) ;—— 1
2
3

(define heads&tail
(lambda (1s)
(values (car 1ls) (cdr 1s))))

(head&tail " (a b c¢)) ;——— a
(b ¢)

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 avs

(call-with-values producer consumer)

(call-with-values @ Data types and Interpreters
(lambda () (values ’'bond ' james))

(lambda (x y) (cons y Xx)))

;——— (james . Dbond)

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 77/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 78/171

Data Types and their Representations

. @ Data specification: Non negative numbers.
@ Want to define new data types. P 9

o a specification - tells us what data (and what operations on that Zero = [0]
data) we are trying to represent. (is-zero? [n]) = { #t n=0
e implementation - tells us how we do it. @ operations: #f n#£0
@ We want to arrange things so that you can change the (succ [n]) = [n+1]
(pred [n+1]) = [n]

implementation without changing the code that uses the data type
(user = client; implementation = supplier/server). @ Extensions to do other operations: Should work irrespective of

@ Both the specification and implementation have to deal with two the underlying representation.

things: the data and the operations on the data. (define plus
@ Vital part of the implementation is the specification of how the data (lambda (x y)

is represented. We will use the notation [v] for “the representation (1f (is-zero? x) y
of data ‘v’ (succ (plus (pred x) y)))))

o Irrespective of the representation (plus [x][y]) = [x+Y]

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 79/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 80/171

Scheme Representation of Numbers Unary Representation of Numbers

0] 0
[n+1] = (cons #t [n])

@ So the integer n is represented by a list of n #t’s.
@ Satisfy the specification:

[n] = the Scheme integer n

define zero 0) (define zero = ' ())

define is—-zero? zero?)
define succ (lambda (n) (+ n 1)))

—~ o~~~

(define is—zero? null?)

define prec (lambda (n) (- n 1)))
(define succ
(lambda (n) (cons #t n)))
(define pred cdr)
V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 81/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 82/171

Data Representation (contd). Example 2: Finite Procedural Representation

F=1{(s1,v1), e (Snyvn) }] IfE (f 50) = wi.

Implement the operations by:

functions

(define apply-ff

@ Data specification: a function whose domain is a finite set of (lambda (ff z) (ff z)))
Scheme symbols, and whose range is unspecified.
@ Specification of operation: Aka - the interface (define empty-ff
empty-ff = [¢1 (lambda (z)
(apply-££f [f] s) = f(s) (error ’env-lookup
(extend-ffsv [f]) = Jg] (format "couldn’t find “s" z))))
h N[V s'=s
where g(s) - f(S/) Otherwise (define extend-ff
@ Interface gives the type of each procedure and a description of the (Lambda (key val £f)
intended behavior of each procedure. (Lambda (z)
(1f (eg? z key)
val

(apply—-ff ff z)))))

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 83/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 84/171

Procedural Representation

Examples

> (define ff-1 (extend-ff ’"a 1 empty-ff))
> (define ff-2 (extend-ff 'b 2 ff-1))

> (define ff-3 (extend-ff 'c 3 f£f-2))

> (define ff-4 (extend-ff ’'d 4 f£f-3))

> (define ff-5 (extend-ff e 5 ff-4))

> ff-5

<Procedure>

> (apply—-ff ff-5 ’d)

4

> (apply-ff empty-ff ’c)

error in env-lookup: couldn’t find c.
> (apply—-ff f£-3 ’d)

error in env-lookup: couldn’t find d.
> (define ff-new (extend-ff ’'d 6 ff-4))
> (apply—-ff ff-new ’'d)

> 6
V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 85/171
Association-list Representation
Examples
> (define ff-1 (extend-ff 'a 1 empty-£ff))
> (define ff-2 (extend-ff 'b 2 ff-1))
> (define ff-3 (extend-ff ¢ 3 f£f-2))
> (define ff-4 (extend-ff 'd 4 ff-3))
> ff-4
((d 4) (¢ . 3) (b . 2) (a . 1))
> (apply—-ff ff-4 ’d)
4

Useless Assighment: Specification and Implementation of Stack as a
type.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 87/171

Association-list Representation

[{(s1,v1), s (S Vi) }] = ((51.1)---(S0-v0))

(define empty-ff ' ())

(define extend-ff
(lambda (key val ff)
(cons (cons key val) ff)))

(define apply-ff
(lambda (alist z)
(if (null? alist)
(error ’'env-lookup
(format "couldn’t find “s" z))
(let ((key (caar alist))
(val (cdar alist))
(ff (cdr alist)))
(

(1f (eg? z key) val (apply-ff ff z))))))

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 86/171

Outline

e Data types and Interpreters
@ Interpreters: Stack machine

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 88/171

Interpreters Stack machine grammar

@ Goal: interpreter for a stack machine.
@ The machine will have two components: an action and a stack.
@ The stack contains the data in the machine.
The gompl_eXIty of Interpreters depend on the language under @ We will represent the stack as a list of Scheme values, with the top of the
consideration. stack at the front of the list.
@ Simple/Complex @ The action represents the instruction stream being executed by the
@ Environments machine.
@ Cells @ Action ::= halt
| incr; Action
@ Closures

| add; Action;
@ Recursive Environments | push Integer ; Action

| pop; Action

@ Our interpreter - eval-action: takes an action and a stack and returns
the value produced by the machine at the completion of the action.

@ Convention: the machine produces a value by leaving it on the top o
stack when it halts.

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 89/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 90/171

Specification of Operations Representation of Operations

Specification for eval-action. Our VM
@ What (eval-action a s) does for each possible value of a.

(eval-action halt s) = (car s) To write Scheme code to implement the specification of
eval—-action, we need to specify a representation of the type of
(eval-action incr; a (v w ...)) = actions. (Our bytecode).
(eval-action a (v+l w ...)) [halt] = (halt)
[incr;a = (incr. [al)
(eval-action add; a (v w x ...)) = @ A simple choice - use lists. [add;a] = (add. [a])
(eval-action a ((v+w) x ...)) [push v;a] = (pushv. [a])
[pop; al = (pop. [a])
(eval—-action push v; a (w ...)) =

@ An action is represented as a list of instructions.

(eval—-action a (v w ...)) . L
@ Typical actionis (push 3 push 4 add halt)
(eval-action pop; a (v w ...)) =
(eval—-action a (w ...))

@ Is the specification complete? How to prove the same?

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 91/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 92/171

A Stack Machine Interpreter Interpreter in action

(define eval-action
(lambda (action stack)
(let ((op-code (car action)))

(case op-code Running the Interpreter
((halt)
(car stack)) > (define start
((incr) . . (lambda (action)
(eval—action (cdr action) , , ,
(cons (+ (car stack) 1) (cdr stack)))) (eval-action action " ())))
((add)
(eval—action (cdr action)
(cons (+ (car stack) (cadr stack)) (cddr stack)))) > (start ’ (push 3 push 4 add halt))
((push) 7
(let ((v (cadr action)))
(eval—-action (cddr action) (cons v stack))))
((pop)
(eval—-action (cdr action) (cdr stack)))
(else y
(error ’'eval-action "unknown op-code:" op—code))))g
V.Krishna Nandivada (IIT Madras) €S3100 - Jul 2022 93/171 V.Krishna Nandivada (IIT Madras) €S3100 - Jul 2022 94/171

interpreters (contd.): Environment

@ An environment is a finite function - that maps identifiers to values.
@ Why do we need an environment?
@ Specification:

e Data types and Interpreters empty-Env = [¢]
. . (apply-Env [f]s) = f(s)
@ Environments for an interpreter (extend-Envsv[f]) = [g]

v s =s

1y —
where g(s') = { f(s) Otherwise

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 95/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 96/171

Environment implementation extend-env-list

(define empty-env
(lambda () " ()))

(define extend-env-1list

defi tend- ,
(define extend-env (lambda (ids vals env)

(lambda (id wval env) . .
(cons (cons id val) env))) (if (null? ids)
env

(extend-env-1ist
(define apply-env

(lambda (env id) (cdr 1ids)
(if (or (null? env) (null? id)) (cdr wvals)
null (extend-env (car ids) (car vals) env)))))
(let ((key (caar env))
(val (cdar env))
(env-prime (cdr env))) Home reading: Read Scheme alist representation and see how the
(if (eg? id key) wval (apply-env env-prime id))))))

above routines can be compacted.

(define extend-env-1list
(lambda (ids wvals env) ...)

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 97/171 V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 98/171

Interpreter with environment Extending an environment - let expression

(define eval-Expression
(lambda (Expression) . (LetExpression (Tokenl Token2 Token3
(record-case Expression List Token4 Expression Tokenb)

(PlusExpression (Tknl Tkn2 Expressionl Expression2 Tkn3) (Letx ((ids (get-ids List))

(+ (eval-Expression Expressionl) (exps (get-exprs List))
(eval-Expression Expression2)))) (vals (map (lambda (Expression)
o (eval-Expression Expression env))
(Identifier (Token) (apply-env env Token))
)) exps))
(new—env (extend-env-1list ids wvals env)))
(define run (eval-Expression Expression new—-env)))
(lambda ()
(record—-case root > (map cdr " ((1 2 3) (3 4 5)))
(Goal (Expression Token) ((2 3) (4 5))
(eval-Expression Expression (empty-env))) Useless assignment: How to interpret Let*?

(else (error 'run ‘‘Goal not found’’)))))

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 99/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 100/171

Update to variables

@ One undesirable feature of Scheme: assignment to variables.
@ A variable has a name and address where it stores the value,
which can be updated.
(define make-cell
(lambda (value)
(cons ’xcell wvalue)))

e Data types and Interpreters
(define deref-cell cdr)

@ Cells for Variables (define set-cell! set-cdr!)

@ When we extend an environment, we will create a cell, store the
initial value in the cell, and bind the identifier to the cell.
(define extend-env

(lambda (id wvalue env)
(cons (id (make-cell wvalue)) env)))

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 101/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 102/171

Example: Interpreting a let expression

(let ((x 7))
(+ (let ((y x)
(x (+ 2 x)))
(» x y)) %)

e Data types and Interpreters

@ Closures

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 103/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 104/171

Include headers in Scheme

(load "recscm.scm")
(load "records")
(load "tree")

105/171

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022

Closures

(define eval-Expression
(lambda (Expression env)
(record-case Expression

(ProcedureExp (Tokenl Token2 Token3
List Tokend4 Expression Tokenb))

(make-closure List Expression env))

(Application (Tokenl Expression List Token2)

(letx
((clos (eval-Expression Expression env))

(ids (get-formals clos))
(vals (map (lambda (Exp)
(eval-Expression Exp env))

List))

(static-env (get-closure-env clos))

(new—env
(extend-env-1ist ids wvals static-env)))

(body (get-body clos))
(eval-Expression body new-env)))

)

107/171

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022

Closures

To represent user-defined procedures, we will use closures.

(define-record closure (formals body env))

106/171

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022

If Stmt

(define eval-Expression
(lambda (Expression env)
(record-case Expression

(Tokenl Token2 Expressionl

(IfExpression
Expression?2 Expression3 Token3)

(1f (eval-Expression Expressionl env)
(eval-Expression Expression2 env)
(eval-Expression Expression3 env)

-)))

108/171

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022

Outline

e Data types and Interpreters

@ Recursive environments

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 109/171

Recursive environments

(define apply-env
(lambda (env id)
(record—-case env

(rec—env (recdecl-list old-env)
(let ((id-1list (get—-ids recdecl-1list)))
(1f (member? id id-1list)
(let* ((RecProc (get—-decl id recdecl-list))
(ProcExpr (get-proc-expr RecProc)))

(make-cell (make-closure ;; a cell
(get—-formals ProcExpr)
(get-body ProcExp) env)))

(apply—-env old-env id)))))))

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 111/171

Recursive Environments for recursive definitions

@ We need two kinds of environment records.

@ Normal environments contain cells.

o A recursive environment contains a RecDeclarationList. If one
looks up a recursively-defined procedure, then it gets closed in the
environment frame that contains it:

(define-record normal-env (ids vals env))
(define-record rec—env (recdecl-list env))

(define eval-Expression
(lambda (Expression env)
(record-case Expression

(RecExpression (Tokenl Token2 Token3

List Token4 Expression TokenH)
(eval-Expression

Expression
(make—-rec—-env List env)))
(else (error ...)))))
V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022

110/171

Last class

Interpreters

Environment

Cells

Closures

Recursive environments

Interpreting OO (MicroJava) programs.

00000

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 112/171

Introduction
Introduction

@ Formalities @ An interpreter executes a program as per the semantics.
@ Overview @ An interpreter can be viewed as an executable description of the semantics of a
Imperative Languages programming language.
Object Oriented Languages @ Program semantics is the field concerned with the rigorous mathematical study
Functional Programming Languages of the meaning of programming languages and models of computation.
@ The Scheme Language @ Formal ways of describing the programming semantics.
© Data types and Interpreters e Operational semantics - execution of programs in the language is
@ Interpreters: Stack machine described directly (in the context of an abstract machine).
@ Environments for an interpreter @ Big-step semantics (with environments) -is close in spirit to the
@ Cells for Variables interpreters we have seen earlier.
o Closures @ Small-step semantics (with syntactic substitution) - formalizes the
i . inlining of a procedure call as an approach to computation.
@ Recursive environments

e Denotational Semantics - each phrase in the language is translated
to a denotation - a phrase in some other language.

@ Introduction e Axiomatic semantics - gives meaning to phrases by describing th

@ Big Step Semantics logical axioms that apply to them.

@ Small Step Semantics

Program Semantics

113/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 114/171

@ Parametric Polymorphism - System F

Lambda Calculus Extension of the Lambda-calculus

@ The traditional syntax for procedures in the lambda-calculus uses
the Greek letter A (lambda), and the grammar for the

lambda-calculus can be written as: We will give the semantics for the following extension of the
e = x|Axelele lambda-calculus:
x € Identifier (infinite set of variables) e = x| /lx...e | eiex |.c | succ e .
@ Brackets are only used for grouping of expressions. Convention x & Identifier (infinite set of variables)
for saving brackets: ¢ € Integer

o that the body of a A-abstraction extends “as far as possible.”
e For example, Ax.xy is short for Ax.(xy) and not (Ax.x)y.
o Moreover, ejees is short for (ejes)es and not e (ezes).

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 115/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 116/171

@ Program Semantics

@ Big Step Semantics

V.Krishna Nandivada (lIT Madras)

@ Program Semantics

@ Small Step Semantics

V.Krishna Nandivada (IIT Madras)

CS3100 - Jul 2022

CS3100 - Jul 2022

17/171

119/171

Big step semantics

Here is a big-step semantics with environments for the
lambda-calculus.

w,v € Value

% = c|(Ax.e,p)
p € Environment
p H= XLV Xy o Yy

The semantics is given by the following five rules:

(1) pxev (p(x)=v)

2) pF Ax.e>(Ax.e,p)

3) pter(Axep’) phFerv pix—vie>w
pFeexpw

(4) prFcere

(5) PP ool

pFsuccerc

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 118/171

Small step semantics

@ In small step semantics, one step of computation = either one
primitive operation, or inline one procedure call.

@ We can do steps of computation in different orders:

> (define foo
(lambda (x y) (+ (x x 3) y)))
> (foo (+ 4 1) 7)
22
Let us calculate:

(foo (+ 4 1) 7)

=> ((lambda (x y) (+ (x x 3) vy))
(+ 4 1) 7)

=> (+ (» (+ 4 1) 3) 7)

=> 22

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 120/171

Small step semantics (contd.)

We can also calculate like this:

(foo
(+ 4 1) 7)

=> (foo 5 7)

=> ((lambda (x y) (+ (x x 3) y))
5 7)

=> (+ (» 5 3) 7)

=> 22

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 121/171

Methods of procedure application

Call by value

((lambda (x) x)
((lambda (y) (+ vy 9)) 5))

=> ((lambda (x) x) (+ 5 9))
=> ((lambda (x) x) 14)

=> 14

Always evaluate the arguments first
@ Example: Scheme, ML, C, C++, Java

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 123/171

Free variables

A variable x occurs free in an expression E iff x is not bound in E.Examples:

@ no variables occur free in the expression

(lambda (y) ((lambda (x) x) vy))
@ the variable y occurs free in the expression
((lambda (x) x) vy)

An expression is closed if it does not contain free variables.
A program is a closed expression.

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 122/171

Methods of procedure application

Call by name (or lazy-evaluation)

((lambda (x) x)
((lambda (y) (+ y 9) 5))

=> ((lambda (y) (+ v 9)) 5)
=> (+ 5 9)

=> 14

Avoid the work if you can
@ Example: Miranda and Haskell
Lazy or eager: Is one more efficient? Are both the same?

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 124/171

Gall by value - 100 eager?

@ Q: If we run the same program using these two semantics, can we Sometimes call-by-value reduction fails to terminate, even though
get different results? call-by- name reduction terminates.
° A (define delta (lambda (x) (x x)))
o If the run with call-by-value reduction terminates, then the run with (delta delta)
]E::;!-e;)y-name reduction terminates. (But the converse is in general —> (delta delta)

=> (delta delta)
=>

e If both runs terminate, then they give the same result.

Church Rosser theorem

E

(define const (lambda (y) 7))
E1/ \EZ (const (delta delta))

N @ call by value reduction fails to terminate; cannot finish evaluating
V the operand.

@ call by name reduction terminates.

Consider the program:

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 125/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 126/171

Summary - calling convention Beta reduction

@ A procedure call which is ready to be “inlined” is called a
beta-redex. Example ((lambda (var) body) rand)

@ In lambda-calculus call-by-value and call-by-name reduction allow
@ call by value is more efficient but may not terminate the choosing of arbitrary beta-redex.
@ call by name may evaluate the same expression multiple times. @ The process of inlining a beta-redex for some reducible
expression is called beta-reduction.
@ Lazy languages uses - call-by-need. -

. lambd bod d) —> bod :=rand
@ Languages like Scala allow both call by value and name! ((lambda (var) bedy) rand) => bodylvar:=rand]

@ n conversion: A simple optimization:
(Ax (Ex)) = E

@ A conversion when applied in the left-to-right direction is called a
reduction.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 127/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 128/171

Notes on reduction Notes on reduction

@ Is there a reduction strategy which is guaranteed to find the
answer if it exists? — leftmost reduction (lazy evaluation).

@ leftmost-reduction — reduce the B-redex whose left parenthesis

@ Applicative order reduction - A B reduction can be applied only if comes first
both the operator and the operand are already values. Else? @ A lambda expression is in normal form if it contains no -redexes.
@ Applicative order reduction (call by value), example: Scheme, G, @ An expression in normal form — cannot be further reduced. e.g.
Java. constant or (lambda (x) X)
@ Church-Rosser theorem — expression can have at most one
normal form.
@ leftmost reduction will find the normal form of an expression if one
exists.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 129/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 130/171

Subsitution

© Care must be taken to avoid name clashes. Example: @ The notation e[x := M] denotes e with M substituted for every free

((lambda (x) occurrence of x in such that a way that name clashes are avoided.
(lambda (y) (y x))) @ We will define e[x := M] inductively on e.
(v 5)) x[x == M]| = M
should not be transformed into)()Ecxl‘;;‘ﬁ —M] = %};Sz;)
(lambda (y) (v (y 5))) Ay.e)x:=M] = Az(leily = 2 = M))
@ The reference to y in (y 5) should remain free! (where x # y and z does not
@ The solution is to change the name of the inner variable name y to occur free in e; or M).
some name, say z, that does not occur free in the argument y 5. (e1e2)[x := M] = (e1[x := M])(ez[x := M))
clx:=M] = ¢
((lambda (x) (succ e))[x :=M] = succ (ei[x :=M)])
(lambda (z) (z x))) @ The renaming of a bound variable by a fresh variable is called
(y 5)) alpha-conversion.

. @ Q: Can we avoid creating a new variable in the fourth rule ?
=> (lambda (z) (z (y 5))) ;; y 1is free.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 131/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 132/171

Here is a small-step semantics with syntactic substitution for the

lambda-calculus.
S Value

v = clAxe

The semantics is given by the reflexive, transitive closure of the relation —y

—vC Expression x Expression

(6) Ax.ev—ye[x: =]
/
e —ye
(7) —
ejey —y eje
/
e —vy ()
(8) 7
vey —y ve,
(9) succeyp —y CZ(IVCQW = [Cﬂ -+ 1)
(10) ¢l v e
SUCC e] —y succe,
el acodl | - L -l alo o
V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 133/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 134/171

Types are Ubiquitous What is a Type?

@ Atype is an invariant.

@ Q: Write a function to print an Array of integers? _
@ For example, in Java

void printArr(int A[]) {

for (int i=0;i<A.length;++1i) { it v;
System.out.println (A[i]); e . . .
) specifies that v may only contain integer values in a certain range.
} @ Invariant on what?

@ About what?

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 135/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 136/171

Why Types? Example language

Advantages with programs with types — three (tall?) claims:

@ Readable : Types provide documentation;
“Well-typed programs are more readable”.

@ A-calculus.
@ Admits only two kinds of data: integers and functions.
@ Grammar of the language:

Example: bool equal(String s1, String s2);

@ Efficient: Types enable optimizations;

“Well-typed programs are faster”. ¢ x| Axe|eier | ¢ | succe

x € lIdentifier (infinite set of variables)
¢ € Integer

Example:c=a+b

@ Reliable: Types provide a safety guarantee;
“Well-typed programs cannot go wrong”.

Programs with no-type information can be unreadable, inefficient,
and unreliable. :

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 138/171

Type environment

N &

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 137/171

Simply typed lambda calculus

@ Types: integer types and function types.

© Grammar for the types: @ Type environment A : Var — types.

to=Int|7 = o @ A type environment is a partial function which maps variables to
types.

@ Extend the signature of a lambda: Ax : t.e — every function
specifies the type of its argument.

0 © o Int
@ Examples: ¢ Ax:Int .(succ x) :Int— Int
Ax:Int Ay:Int succx+y : Int—Int— Int
@ These are simple types - each type can be viewed as a finite tree.
potymorphic-types-dependentiypes

@ Infinitely many types.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 139/171

@ ¢ denotes the type environment with empty domain.

@ Extending an environment A with (x,7) - given by A[x : 7]

@ Application - A(y) gives the type of the variable y.

@ Type Evaluation: A+ e: t— e has type ¢ in environment A.
@ Q: How to do type evaluation?

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 140/171

Type rules Type rules

@ The judgement A+ ¢ : r holds, when it is derivable by a finite derivation tree using

the following type rules. AbFx:t(A(x)=1) (1)
AFx:t(A(x)=1) (1)
Alx:s]Fe:t

Afx:s]ke:t

2) AFAx:se:s—t
AFAx:se:s—t

Ale :s—t, Aley:s

Alej:s—t, Aley:s 3

Al ejey:t (3) Al ejey:t ()

AFO:Int (4) AFO:Int (4)
AFe:Int

At succe:Int (5) At e:lInt (5)

. _ AFsucce:Int
@ Exactly one rule for each construct in the language. Also note the axioms

@ An expression e is well typed if there exist A,z such that A - e : 7 is derivable.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 141/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 142/171

Example type derivations Examples of type rules

@ Identity function:

@ ¢FO0:Int Ofx:Int]Fx:Int
¢FAx:Int x:Int — Int

@ succ

Ofx:Int]Fx:Int @ Apply
¢[x:Int]Fsuccx:Int
¢+ Ax:Int .succ x:Int — Int

Of is—=t][x:s]-fis—t Of:s—t][x:s]Fx:s
Of :s—1x:s]Ffx:t
Of ;s —tlFAx:sfx:s—t
OFAf s —tAx:isfx:(s—1t) = (s—1)

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 143/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 144/171

Type derivation for SKI SKI combinators

@ |-combinator - identity function.

@ K-combinator - K, when applied to any argument x returns a
constant function K x, which when applied to any argument y

:?tiryni); @ SKSK = KK (SK) = K
@ SKI(KIS) = SKII = KI(IT) = KII = I
Plx:slly:t]bx:s ® KS(I(SKSI)) = KS(I(KI(SI))) = KS(I(KII)) = KS(II) = KSI = §
Plx:sFAy:tx:1—s @ SKIK = KK(IK) = KKK = K

OFAx:sAy:tx:is— (t—5)
@ S-combinator, for substitution: S xyz = xz(yz)
Useless assignment - derive the type derivation for S combinator.

@ SKil is turing complete. Actually, SK itself is turing complete. — Self
study.

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 145/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 146/171

Example underivable term

@ succ (Ax:t.e)

(Recall Rule 5):
AFe:Int

A succe: Int

AFAx:te:Int
AtFsucc (Ax:t.e):Int

underivable

@ No rule to derive the hypothesis ¢ - Ax : t.e.
@ succ (Ax : r.e) has no simple type.

e Typed Lambda Calculus
@ Simply Typed Lambda Calculus

@ Parametric Polymorphism - System F
V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 147/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 148/171

Polymorphism - motivation Polymorphism - variations

@ Type systems allow single piece of code to be used with multiple
types are collectively known as polymorphic systems.

@ Variations:
@ AppTwicelnt = Af : Int — Int .Ax: Int .f (f x) ° Parametric polymorphism: Single piece of codg to be typed
AppTwiceRed = Af: (1:Int) — (I: Int).Ax: (I: Int).f (f x) generically (also known as, let polymorphism, first-class

. polymorphism, or ML-style polymorphic).

AppTwiceOther = @ Restricts polymorphism to top-level 1et bindings.

Af:(Int —Int)— (Int —Int).Ax: (Int —Int).f (f x) e Disallows functions from taking polymorphic values as arguments.

@ Uses variables in places of actual types and may instantiate with
actual types if needed.

@ Example: ML, Java Generics

@ Breaks the idea of abstraction: Each significant piece of (lfiet((?Tzliap;?r;b:icig)l??lbda = A
functionality in a program should be implemented in just one place (let ((b (apply zero? 3))) ...
in the source code. e Ad-hoc polymorphism - allows a polymorphic value to exhibit
different behaviors when viewed using different types.

@ Example: function Overloading, Java instanceof operator.
e subtype polymorphism: A single term may get many types using,

subsumption.
@ Java 1.5 onwards admits Parametric, Ad-hoc and subtype

Parametric Polymorphism - System F System F

@ Definition of System F - an extension of simply typed lambda

calculus.
@ System F discovered by Jean-Yves Girard (1972) @ Lambda abstraction is used to abstract terms out of terms.
@ Polymorphic lambda-calculus by John Reynolds (1974) @ Application is used to supply values for the abstract types.
@ Also called second-order lambda-calculus - allows quantification
over types, along with terms. System F

@ A mechanism for abstracting types of out terms and fill them later.
@ A new form of abstraction:

@ AX.e — parameter is a type.
e Application — el[f]
o called type abstractions and type applications (or instantiation).

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 151/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 152/171

° o
(AX.e)[t1] = [X — t1]e @ Expressions:
en=---|AX.ele[t]
Examples @ Values
o o vi=--|AX.e
id=AX.Ax:X.x o Types
to=---|VX.t

T fid: VXX —X .
PP ~ @ typing context:

° A=A x:t|AX
applyTwice = AXAf : X = X.Aa: X f (f a)

Type of applyTwice : VX.(X = X) > X = X

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 153/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 154/171

Typing ruies

° °
t ication 1 e — e t bstracti AXFe
e a| ication 1 — ype aobstraction
yp pp el[tl]—>e/1[[1] Al_lXEI Vth
)]
L. L Ak er: VX.Z’I
type appliation 2 — (AX.e1)[t1] — [X — t1]er type application

AF el[l‘z] : [X — l‘z]l‘l

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 1565/171 V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 156/171

Polymorphic st

@ id=AXAx:Xx

id VXX —=X List of uniform members

@ nil :VX.List X
@ cons: VX.X — List X — List X

value application: id[Int] 0=0: Int @ isnil: VX.List X — bool

@ applyTwice = AX.Af : X — X.Aa: Xf (f a) @ head: VX.List X — X
@ tail: VX.List X — List X

type application: id [Int]: Int — Int

ApplyTwicelnts = applyTwice [Int]

applyTwice[Int |(Ax : Int .succ(succx)) 3=7

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 157/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 158/171

Church lterals

Booleans
@ Recall: Simply typed lambda calculus - we cannot type Ax.x x. @ tru=AtAft
@ How about in System F? @ fls=AtAff
o selfApp : (VX.X — X) — (VX.X — X) @ Idea: A predicate will return tru or f1s.

@ We can write if pred sl else s2as(pred sl s2)

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 159/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 160/171

Building on booleans Building pairs

@ pair = Af As.Ab.Df s

@ To build a pair: pair v w
@ fst=Apptru

@ snd=Ap.p fls

@ and=Ab.Achbc fls
@ or=?AbAchbtruc
@ not =7

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 161/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 162/171

Church numerals Examples - derive the types

@ co=As.Az. 2
@ ci=AsAz. 52

@ cry=AsAz. 5572

@ c3=As.Az. 55572 @ a=AxAyx
Intuition @ b=Af. (f3)

@ Each number n is represented by a combinator c,. ® ¢ =Ax. (+(head x) 3)

@ ¢, takes an argument s (for successor) and z (for zero) and apply s, °d= Af: ((£3):(f Ay.¥)
n times, to z. @ appTwice = Af. Ax.ffx

@ ¢p and f£1s are exactly the same!

@ This representation is similarto the unary representation we
studies before.

@ scc=AnAsAzs (nsz)

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 163/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 164/171

Type inference First order unification

@ Goal: To do type inference
@ Given: A set of variables and literals and their possible types.
e Remember: type = constraint.
@ Goal: Given a program with some types. @ Target: Does the given set of constraints have a solution? And if
@ Infer “consistent” types of all the expressions in the program. so, what is the most general solution?
@ Unification can be done in linear time: M. S. Paterson and M. N.
Wegman, “Linear Unification”, Journal of Computer and System
Sciences, 16:158—-167, 1978.

@ We will instead present a simpler to understand, complex to run
algorithm.

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 165/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 166/171

Unificaion algorithm for Type infererce

(Hindley-Milner)

@ We will stick to simple type experssions generated from the grammar:
to=t—1|Int|a Input: G: set of type equations (derived from a given program).

where o ranges over type variables. Outpu't: Unification o
@ Example: Q failure = false; 0 = {}.
@ while G # ¢ and — failure do
Choose and remove an equation e from G. Say ec is (s =1).
If s and ¢ are variables, or s and ¢ are both Int then continue.
lfs=s; —>s,andt=1 —n,then G=GU{s1 =11,50 =1 }.
If (s=Int and ¢ is an arrow type) or vice versa then failure = t rue.
If s is a variable that does not occur in ¢, then 6 = ¢ o [s :=1].
If z is a variable that does not occur in s, then 6 = ¢ o [r:=].
If s # ¢t and either s is a variable that occurs in ¢ or vice versa then
failure = true.

© end-while.

Q if (failure = true) then output “Does not type check”. Else o/p o.
Q: Composability helps?
Q: Cost?

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 167/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 168/171

((Int =)= B)a:=Int,B:=(Int —Int)]=(Int —Int)— (Int — Int)

((Int = a)=7)oe:=Int,B:=(Int - a)]=(Int —=Int) =7y

@ We say given a set of type equations, we say a substituion ¢ is an unifier or
solution if for each of the equation of the form s =1, so = ro.

@ Substituions can be composed:

000000

t(co0)=(r0)6

@ A substituion o is called a most general solution of an equation set provided
for any other solution 6, there exists a substituon T suchthat0 =c ot

Input: G: set of type equations (derived from a given program).
Output: Unification o

Q failure = false; 0 ={}.
© while G # ¢ and — failure do

a=p—Int @ Choose and remove an equation e from G. Say ec is (s =1).
B =Int — Int @ If s and r are variables, or s and r are both Int then continue.
Q lfs=s;—>s,andr=1 —n,thenG=GU{s; =11,50 =1 }.
o=Int — B B . . L2
@ If (s=Int and ¢ is an arrow type) or vice versa then failure = true.
B =o—Int @ If sis a variable that does not occur inr,thenc =0 o [s :=1].
@ Ifzis a variable that does not occur in s, then c = o o [t :=3].
@ If s#rand either s is a variable that occurs in ¢ or vice versa then
failure = true.
© end-while.
Q if (failure = true) then output “Does not type check”. Else o/p o.
V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 169/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 170/171

@ Ensures that we get finite types.
@ If we allow recursive types - the occurs check can be omitted.
e Sayin (s=1), s=Aandr=A — B. Resulting type?
@ What if we are interested in System F - what happens to the type
inference? (undecidable in general)

Self study.

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 171/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 172/171

Imperative Vs Functional Vs Logic

int sum(int [Jarr) {
int S = 0;
for (int 1i=0;i<arr.length;i++) {
S += arr[i];
Ack: Slides borrowed heavily from KC@IITM. }
}

In Scheme

(define (sum arr)
(if (empty? arr) 0 (+ (car arr) (sum (cdr arr)))))

Logic Programming

sum([],0).
sum([H | T], N) :- sum(T,M), N is H+M.

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 173/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 174/171

Declarative Vs Operational Prolog Program and Answers to Questions

@ This Prolog program says what the sum of a list is. o +
e Scheme and Java programs were about how to compute the sum. Queries ==> | Facts + Rules | ==> Answers
@ In particular, prolog program does not define control flow through o ——————— +

the program.
@ program is a collection of facts and rules.

Prolog Program

Facts and Rules together build up a database of relations.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 175/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 176/171

Relational view of the sum program Programs = Relations, Queries? = Lookup

The program:

sum([],0).

sum([H | T], N) :— sum(T,M), N is H+M.
Program defines a table of relations. And queries are look ups in the
inductively defines a table (of infinite number of rows) of relations: table!
o + ?— sum([1,2,3],X).
| List | Sum |
| ===~ | ————— | X =6
I T[] | 0 |
[[1] |1 |
| (1,21 | 3 |
| [2] | 2 |
| ... |]
V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 177/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 178/171

Why this declarative view? Logic Program Can Save the Day

@ Many problems in computer science are naturally expressed as ® Logic programming the programmer to declaratively express the
declarative programs. program
o Rule-based Al, Program Analysis (asking questions on code), Type @ The compiler will figure out how to compute the answers to the
Inference, queries on graphical programs, Uls. queries.

But the programmer has to convert this to Von Neumann
Architecture (Input, CPU, Memory, Output).

Prolog = Logic (programmer) + Control (compiler)

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 179/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 180/171

House of Stk

- HOUSE STARK

@ Is one of the first logic programming languagues ot

e to be precise, it is a family of languages that differ by the choice of o
control.
@ Invented in 1972, and has many different implementations
o We will use SW"PFO'OQ for our StUdy. Brandon Eddard | Catelyn Benjen Lyanna Rhaegar
Stark Stark Tully Stark Stark Targaryen
Sansa A‘: Bran Rickon
Stark TL:Hy Stark Stark
V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 181/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 182/171
Prolog Terms House of Stark
father (rickard, ned) .
Pro]og programs are made up of terms. B HOUSE STARK father (rickard, brandon) .
@ Constants: 1,2,3.14,robb,House Stark’, etc. father(rickard, lyanna).
father (ned, robb) .

@ also known as atoms.
@ Variables: Always begin with a capital letter.
e X,Y, Sticks, _

father (ned, sansa) .
father (ned, arya) .

@ compound terms: male(robb), father(ned,robb). : Query:
. Brandon Eddard | Catelyn Benjen Lyanna Rhaegar
e Top-function symbol/functor: male, father starki SO stk B Targaryen
e arity: Number of arguments; male = 1, father = 2. ; ?— father (ned, sansa) .
@ top function symbols also written down explicitly with arity such as Q‘) (‘9 :
malet, father2. =N T =) Ans: True

Rob Sansa Ar}(a Bran Rickon
Stark Stark Tully Stark Stark

?— father (rickard, sansa) .

Ans: False

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 183/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 184/171

Closed World Assumption

We know that Ned is the father of Bran.
Let us query our program.

?- father (ned, bran).

false.

Closed World Assumption:
@ Prolog only knows the fact that it has been told.
@ Assumes false for everything else.
@ Interesting interactions with negation (we will see this later).

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 185/171

Rules

So far what we have done could have been done with a relational
database.

@ Rules define further facts inductively from other facts and rules.

o Rules have a head and body. H :- B1, B2, B3, ..., BN
o Histrueif B1 AB2 A...A BN is true.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 187/171

Existential Queries

Q: “Who is the father of Arya?”

?— father (X, arya) .

X = ned.
Q: “Who are Robb’s children?”

?— father (robb, X) .

false.

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 186/171

Rules (example)

parent (X,Y) :— father (X,Y).
ancestor (X,Y) :- parent (X,Y).
ancestor (X,Y) :- parent (X,Z), ancestor(Z,Y).

Added 3 rule(s).

Observe that Z only appears on the RHS of the last rule.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 188/171

e coic)

?— ancestor (rickard, X) .

Define mother, cousin, uncle, aunt, sibling.
= ned ;

= brandon ;
= lyanna ;
robb ;

= sansa ;

= arya

XXX X X
Il

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 189/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 190/171

At the core of how Prolog computes is Unification.
material (gold) . ?— valuable (gOld) . 3 .
material (aluminium) . ?— valuable (bauxite) . There are 3 rules for unification:

process (bauxite,alumina). °~ valuable (bronze) .

process (alumina, aluminium) . ?~ Vvaluable (copper). @ Atoms unify if they are identical

process (copper, bronze). @ a and a unify, but not a and b.

true.
valuable (X) :— material (X). true. @ Variables unify with anything.
valuable (X) :- process(X,Y), false. © Compound terms unfiy only if their top-function symbols and
valuable (Y) . false. arities match and their arguments unify recursively.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 191/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 192/171

Unification: Quiz

Which of these unify?
Q@ a&ayes
Q@ a&bno
Q a&Ayes
©Q a&Byes
Q tree(l,r) & Ayes

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 193/171

First Order Logic: Intro

term = constant | variable | function
Terms and Functions: function := f(t1, t2, ..., tn)
// £ is function symbol, and t1, t2, ...tn are allterms.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 195/171

Unification Quiz 2

Which of these unify?
Q@ tree(l,r) & tree(B,C) yes
Q tree(Ar) & tree(l,C) yes
© tree(Ayr) & tree(A,B) yes
O A & a(A) yes (mostly), occurs check disabled by default
@ a&alA)no

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 194/171

Example: Natural numbers

Consider the terms for encoding natural numbers N.

@ Constant: Letzbe 0
@ Functions: Given the natural numbers x and y, let the function

o s(x) represent the successor of x.
e mul(x,y) represent the product of x and y.
o square(x) represent the square of x.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 196/171

First order Logic Precedence of the first-order logic operators

t € term = constant | variable | function
f,geformulas = p(tl, t2, ..., tn) // pisapredicate
SIFVelfAglf—glf g Q-
VX f| 3X.f, where X is a variable. Qv
QA
Predicates on natural numbers 0 . o

@ even(x) - the natural number is even. Qv 3
@ odd(x) - the natural number is odd.

- o (((=b)Ac) — a)
@ prime(x) - the natural number is prime. o
. - can be simplified to
@ divides (x,y) - the natural number x divides y.
, -bAc—a
@ le (x, y) - the natural number x is less than or equal to y
@ gt (x, y) - the natural number x is greater than y.
V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 197/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 198/171

Inference Rules Interpretation

@ What we have seen so far is a syntactic study of first-order logic.
w (= E) Vx—f(X) (VE) e Semantics = meaning of first-order logic formulas.
g f(t) @ Given an alphabet A, from which terms are drawn from and a
domain D, an interpretation maps:
f(t) f g e each constant ¢ € A to an element ?n D.
—_— an (AD) e each n-ary function f € A to a function D" — D.
dx. f(x) fAg e each n-ary predicate p € A to a relation Dy x --- x D,.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 199/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 200/171

nterpretation - example

@ A model for a set of first-order logic formulas is equivalent to the
assignment to truth variables in predicate logic.

@ Ainterpretation M for a set of first-order logic formulas P is a

Let us choose the domain of natural numbers N with
@ The constant z maps to 0.

@ The function s(x) maps the function s(x) = x + 1 model for P iff every formula of P is true in M.
@ The predicate /e maps to <. e If M is a model for £, we write M = f, which is read as “models” or
“satisfies”.

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 201/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 202/171

Models exarnple

Take f = Vy.le(z,y). The following are models for f:
@ Domain N, z maps to 0, s(x) maps to s(x) =x+1, and le maps to <

@ Domain N, z maps to 0, s(x) maps to s(x) =x+2, and le maps to
<.
@ Domain N, z maps to 0, s(x) maps to s(x) = x, and le maps to <.
whereas the following aren’t:
@ The integer domain Z,

@ Domain N, z maps to 0, s(x) maps to s(x) = x+ 1, and le maps to >

Take f = Vy.le(z,y). Is the following a model for f?
@ Domain N, z maps to 0, s(x) maps to s(x) =x+ 1, and le maps to <

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 203/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 204/171

nterpretation Vs Mods

An interpretation often (but not always) provides a way to determine
the truth values of sentences in a language.

@ A set of forumulas P is said to be satisfiable if there is a model for
M for P.
@ Some formulas do not have models. Easiest one is f A —f.
@ Such (set of) formulas are said to be unsatisfiable.

If a given interpretation assigns the value True to a sentence, the
interpretation is called a model of that sentence.

A interpretation M for a set of first-order logic formulas P is a model for
P iff every formula of P is true in M.

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 205/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 206/171

Logical consequence and validity Restricting the Language

@ Clearly, the full first-order logic is not a practical model for
Given a set of formulas P, a formula f is said to be a logical consequence of P iff for every computation as it is undecidable.
model M of P, M E f. e How can we do better?

@ Restrict the language such that the language is semi-decidable.

How can you prove this?

@ Alanguage is said to be decidable if there exists a turing machine
« Show that = f is false in every model M of P. that

= Equivalent to, P U = f is unsatisfiable. o accepts every string in L and

@ rejects every string not in L

@ A language is said to be semi-decidable if there exists a turing
Theorem: It is undecidable whether a given first-order logic formula f is valid. machine that

A formula f is said to be valid, if it is true in every model (written as F f).

@ accepts every string in L and
e for every string not in L, rejects it or loops forever.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 207/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 208/171

Definite Logic Programs Definite Clauses

« An atomic forumla is a formula without connectives.
o o . . ' = even(x) and prime(x)
@ Definite clauses are such a restriction on first-order logic that is = but not =even(x), even(x) V prime(y)
semi-decidable. « A clause is a first-order logic formula of the form V(L V ... V L,,), where every L; is an

° Prolog is basically programming with definite clauses atomic formula (a postive literal) or the negation of an atomic formula (a negative literal).
« A definite clause is a clause with exactly one positive literal.

@ In order to define definite clauses formally, we need some - V(Ay V-4, ...V -A,)
auxiliary definitions. = Usually written down as, Ag < A; A ... A A,,forn > 0.
= ormore simply, Ay « A;,...,A,, forn > 0.

» A definite program is a finite set of definite clauses.

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 209/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 210/171

Definite Clauses and Prolog Consistency of Definite Clause Programs

@ Prolog facts are definite clauses with no negative literals.

@ The prolog fact even(z) is equivalent to @ Every definite clause program has a model!

e the definite clause Vz,even(z) < T, @ Proof

e where T stands for true. e there is no way to encode negative information in definite clause
@ Prolog rules are definite clauses. programs.

e The prolog rule ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y) is e Hence, there is no way to construct an inconsistent system (such

equivalent to as f A—f).
° t(he ;iefinite clause Vx,y,z. ancestor(x,y) < parent (x,z)/ ancestor @ Therefore, every definite clause program has a model.
Z,Y)-

@ equivalent ot Vx,y, ancestor(x,y) < 3z. parent (x,z)A ancestor (z,y).

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 211/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 212/171

Prolog Query Resolution

@ Let us assume that the prolog program P is the family tree of
House Stark encoded before.
@ We would like to answer “is Rickard the ancestor of Robb?”
e g =ancestor (rickard,robb).
@ We construct a logical statement
e - ancestor (rickard, robb).

SLD Resolution

@ The whole point of restricting the first-order logic language to
definite clauses is to have a better decision procedue.

@ There is a semi-decidable decision procedure for definite clauses
called SLD resolution.

o SLD = Selective Linear Resolution with Definite Clauses.

@ given an unsatisfiable set of formulae it is guaranteed to derive false
@ however given a satisfiable set, it may never terminate.

which is the negation of the original question
@ The system attempts to show that — ancestor (rickard, robb) is
false in every model of P.
@ equivalent to showing PU — ancestor (rickard, robb) is unsatisfiable.
@ Then, we can conclude that for every model M of P, M |~ q.
e thatis, "Rickard is the ancestor of Robb”.

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 213/171

Example Logic program

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 214/171

Prolog example: Finding the last element

last ([H],H) .

On the board. Instructor, TAs, Students, TASibling ... last ([_ | T], V) :- last(T, V).

Trace it in SWI Prolog.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 215/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 216/171

What happens if I ask for last([],X) ?

sum([],0) .
) sum([H | T], N) :— sum(T,M), N is M+H
1. pattern match exception
2. Prolog says false. sum([]1,0).
3. Prolog says true, X = [] sum([H | T], N) :- sum(T,M), N = M+H
4. Prolog says true, X = ?277?. o]))
= used for unification. is used for arithmetic equality.
:Ans: 2
V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 217/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 218/171

Revisiing len function

A = 142. len([]1,0).

len([_ | T], N) :- len(T,M), N is M+1.
A is 1+2.

Trace it

A is *(3,+(1,2)). len2([],Acc,Acc) .

len2 ([H|T],Acc,N) := M is Acc+l, len2(T,M,N).

There is support for +,x, /, <, =<, >, >= ,etc. Trace it

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 219/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 220/171

Last Call Optimization Prolog example.

What does the following code do?

foo ([

@ This technique is applied by the prolog interpreter]
foo ([H

@ The last clause of the rule is executed as a branch and not a call.

@ We can only do this if the rule is determinate up to that point. foo(Il1,2], X, [1, 2, 3, 4]).
@ No further choices for the rule

rQ,0) .
|P]r Qr [H |R]) . fOO(P, Qr R)-

foo([1,2], [3, 4], X).

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 221/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 222/171

What is the result of the query 1en (2, 2)?
@ Choice points are locations in the search where we could take @ Error due uninstantiated arithmetic expression.
another option. Q[, 1

@ If there are no choice points left then Prolog doesn'’t offer the user

© Query does not terminate.
any more answers.

© Error due to invalid arguments.
Ans: 2. Trace it.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 223/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 224/171

Limiting the number of results Algorithm = Logic + Control

@ Logic: facts, rules and queries

@ Control: how Prolog chooses the rules and goals, among several
available options.
e There are two main control decisions: Rule Order, Goal order.

@ Rule Order. Given a program with a collection of facts and rules,

limit (1,len(A,2)). % Number of results limited to 1. in which order do you choose to pick rule to unify.
e SWI-Prolog chooses the first applicable rule in the order in which
they appear in the program.

@ Goal order. Given a set of goals to resolve, which goal do you
choose

e SWI-Prolog: chooses the left-most sub-goal.
@ Rule order and goal order influences program behaviour.

Goal order: can change the solution. Rule order: can affect the search
for the solution.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 225/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 226/171
Substring in Prolog Prolog queries

<—————— X=—————= >

- + .

| | | | prefix([a,b,c], [a,b,c,d]).

s
T T T * suffix (s, [a,b,c]).
Cmmm e J————————— >

prefix([a,b,c], [a,b,c,d]), suffix (S, [a,b,c]).
We can specify this is seemingly equivalent ways.
@ prefix X of Z and suffix S of X. prefix (suffix (S, [a,b,c], [a,b,cl,la,b,c,d])).
@ suffix S of X and prefix X of Z.

Prolog Queries. The order of goals has no impact (here).

my_append ([1,0,0Q) .
my_append([H | P], Q, [H | R]) :— my_append(P, Q, B
prefix (X, 2) - my_append(X,Y, 7). *“

suffix(Y,Z2) :—- my_append(X,Y,Z2).
V.Krishna Nandivada (IIT Madras) ©S3100 - Jul 2022 227/171 V.Krishna Nandivada (IIT Madras) ©S3100 - Jul 2022 208/171

Goal order may alter the answer Goal order may change the solution.

prefix (X, [b]), suffix([a],X). limit (1, (prefix(X,[b]), suffix([a]l,X))).

suffix([a],X), prefix (X, [b]).

) limit (2, (prefix (X, [b]l), suffix([a]l,X))).
Ans: first one: false.

Ans: second one: ? Trace.

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 229/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 230/171

Rule order can effect the search (for solutions) Occurs Check Problem

Consider the query:

appen2 ([H | P], Q, [H | R]) :- appen2(P, Q, R).
appen2 ([1,0Q,Q) . my_append([],E, [a,b|E]) .
Difference in search? Goes for an infinite loop. Why?
my_append (X, [c],2) . o I[naorgeT thl]Jnlfy this with, append (1, Y, Y) , we willunify £ =
Trace. e whose solutionist = [a,b,a,b,a,b,...].

@ In the name of efficiency, most prolog implementations do not
appen2 (X, [c],7Z) . check whether E appears on the RHS term.

e infinite loop on unification.
Trace.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 231/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 232/171

Enable Occurs check Some Definitions

@ A substitution is a finite set of pairs of terms
{X1/t1,X2/12,... X/t }, Where
e each 1; is a term and
my_append ([],E, [a,b|E]) . @ each X; is a variable
such that X; # f; and X; # X; if i #j.
@ The empty substitution is denoted by ¢.

set_prolog_flag(occurs_check, true).

Returns false. Trace it.

set_prolog_flag (occurs_check, error) . @ For example, o = {X/[1,2],Y/Z,Z/f(a,b)} is a valid substitution.
Would throw an error. Q: What about: {X/Y,Y/X,Z/Z,A/al,A/a2,m/n}
Y, Y, N, N, N, N.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 233/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 234/171

Application of substitution Composition of Substitution

@ The application of substitution o to a variable X, written as Xo is Consider two substitutions @ and . Then, the composition is defined as fo. Intuitively, we will apply the
defined as substitution @ before o in 6.
t,ifX/teo
Xo = ’ . Consider 8 = {X/Y, Z/a} and 0 = {Y /X, Z/b}. Then, 0 = {Y /X, Z/a}.
{ X, otherwise.

Let§ = {X1/s1,...,Xn/8n} and 0 = {Y1/t1, ..., Yn/t,} be two substitutions. The composition fo is
Let o = {Xi/1,X2/t2,... X, /1, }, E be a term or a formula. The the set obtained from the set:

application Ec of o to E is obtained by simultaneously replacing every
occurrence of X; in E with ¢;.

Given o = {X/[] , 2], Y/Z’Z/f(a’ b)}, and E :f()(7 Y, Z), « by removing all X;/s;o for which Xj is syntactically equal to s;o and
Ec *f([l 2] 7 f(a b)) * by removing those Y;/t; for which Y; is the same as some X;.
-)) 2, 9 M

{X1/s10, ..., Xpn/sn0,Y1/t1, ..., Yo /tn}

Now, Eo is known as an instance of E.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 235/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 236/171

Composition of Substitution Composition of Substitution

Let 0, o and -y be substitutions, € be empty substitution, and let E by a term or a formula. Then:
Let s and £ be two terms. A substitution o is a unfier for s and t if so and to are syntactically equal.

o E(b0) = (Ef)o

* (60)y = 8(o)

o el =0e=0.

o 0 = 60 iff Dom(0) N Range(8) = 0. A substitution is o is more general than another substitution @ if there exists a substitution w such that
0= ow.

Lets = f(X,Y)and t = f(g(Z), Z). Leto = {X/9(Z),Y/Z} and 0 = {X/g(a),Y /a,Z/a}. Both &
and 6 are unfiers for s and t.

In general, composition of substitutions is not commutative. For example,

{X/f(V)HY /a} = {X/f(a),Y/a} # {Y /a{X/f(V)} = {Y/a, X/F(¥)}

In the previous example, @ = o{Z/a}. Hence, o is more general than 6.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 237/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 238/171
Composition of Substitution Composition of Substitution

A unfier is said to be the most general unfier (mgu) of two terms if it is more general than any other unfier

of the terms. What is the mgu of f(X,Y,Z) and f(Y,Z,a)?
A pair of terms may have more than one most general unifier. For example, for the terms f(X, X) and 0 {X/a7 Y/a7 Z/a}
f(Y, Z), the unifiers @ = {X/Y,Z/Y} and 0 = {X/Z,Y | Z} are both most general unifier. o {X/b Y/b Z/b}
9 9
0=0{Z/Y}ando =6{Y/Z}. o {X/Y Z/Y}
)
If the unfiers 6 and o are both mgus, then there is a substitution v = {X1/Y1, ..., X,,/Ys} where X; e €

and Y; are variables such that § = o7y.
Ans: 1.

Intuitively, @ can be obtained from o by renaming the variables.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 239/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 240/171

Algorithm to Compute MGU Trace the mgu algo

Given two terms T and T,, output 6 the mgu, if one exists, else FAIL.
Algorithm: mgu(T,, T>).
Initialise
Substitution 0 = &,
Stack X to T1 = T2,

Failed = false. Q: mgu(f(X, Y,Z),f()(7 Y,Z))
while)((2 n’o{tfemptg && not Failed) { 6 z Falled
pop X = rom .
case Init. ¢ F(X,Y,Z2)=f(X,Y,Z))] false
X is a \‘Iariable that (?oes not (.)ccur in Y: 1 ¢ [X — Y,X — Z, Y = a] false
substitute Y for X in X and in 6
add X/Y to 0 2. {X/Y} [Y =7ZY= a] false
Y is a variable that does not occur in X: o
substitute X for Y in X and in 6 3 {X/Z’ Y/Z} [Z - a] false
add ¥/x to 0 4. {X/a,Y/a.Z)a}] false
X and Y are indentical constants or variables:
continue
X is f£(x1,..., Xn) and Y is f(Y1,..., ¥Yn):
push Xi = Yi, i=1 to n to X
otherwise:
Failed = true
}
If Failed = true, then return FAIL else return @
V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 241/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 242/171

Building an Abstract Interpreter to Solve Constraints A few points about the algorithm

@ Input. A goal G, and a program P.

© Output. An instance of G that is a logical consequence of P, or
false otherwise.

© SetR =G. // resolvent
O while (R is not empty) (recover from bad choices) and choice points (present more than

@ The algorithm is non-deterministic.
@ The abstract interpreter does not explicitly encode backtracking

@ choose a goal A from resolvent. // goal order. one result).
@ choose a (renamed) clause A’ < By, B,,---,B, from P // rule order.

@ such that 6 = A and A’ is the mgu.

© if no such goal and clause exist break;
Q@ replace A by By, By, ... B, inR.
@ apply theta to R and G.

@ If Ris empty, output G.
© Else output false.

@ The program is said to be deterministic, if there is exactly one
clause from the program to reduce each goal.

e No backtracking and choice points are necessary.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 243/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 244/171

Back to Prolog Open Lists

@ So far all of our uses of variables have been in queries or rules,
but not in terms representing objects.

@ Here is a open list which has a prefix of [1,2].
- L = [1,2 | X]

L = [1, 2[X].
@ We can (pretend to) extend the list L by unifying X with something
else.

- L = [1,2 | X], X = 1[3] Y]
L = [l, 2] 3|Y]I
X = [3]Y].

@ Such lists are said to be open lists.

@ The ending variable is referred to as the end marker variable of
the list.
e An empty open list consist of just an end- marker variable.
o Alistis closed if it is not open

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 245/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 246/171
Queues using open lists Implementing Queues
, setup (g (X, X)) .
°
Aqueu.e is representetd by g (L, E), where leave (A, q(X,2), q(Y,2)) - X = (A | Y]
. L!Sbea”OPf?_”“Std o of enter (A, q(X,Y), q(X,2)) := Y = [A | 7]
e E is some suffix (end-marker) of L. wrapup (g([]1,[]1)). % empty queue
@ The contents of the queue are the elements in L that are not in E.
leave (A, g(X,2), g(Y¥,2)) = X = [A | Y].

@ We will use predicates enter and leave to capture elements entering and
leaving the queue.

e enter(a,Q,R): when an element a enters the queue Q, we get the while leave removes an element from the prefix.

queue R.
o leave(a,Q,R): when an element a leaves the queue Q, we get the enter (A, q(X,Y), q(X,2)) :—= Y = [A | 2].
queue R.

enter removes (exposes) element from the suffix!

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 247/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 248/171

Queue

?- setup(Q), enter(a,Q,R), enter(b,R,S),
leave (X,S,T), leave(Y,T,U), wrapup(U).

= q(la, bl, [a, bl),
= q(la, b], [b]),
= q(la, bl, [1),

= a,

a(lbl, [1),

:b,

= q(ll, [1).

: What are the lengths of Q, R, S, T, U? 0, 1, 2, 1, 0.

O C<AX®nwWOo
Il

Deficient Queues

Interestingly, the implementation also works where arbitrary elements
are first popped and then unfied with elements pushed later.

?- setup(Q), leave(X,Q,R), leave(Y,R,S),
enter(a,sS,T), enter(b,T,U), wrapup(U).

= q(la, bl, [a, bl),
= a,

q(lbl, [a, bl),
=b,

q(ll,
= qgl([l]l, [bl),
q(ll,
What is the length of Q, R, S, T, and U? 0, -1, -2, -1, 0

c H n KX X0
Il

V.Krishna Nandivada (lIT Madras)

CS3100 - Jul 2022

249/171

Compacting the Queues

setup (g (X, X)) .
leave (A, g(X,2),
enter (A, g(X,Y),
wrapup (q([],[])) .

Can be compacted to:

setup (g (X, X)) .
leave (A, g([AlY],Z
enter (A, g(X, [Al|Z]
wrapup (g ([]1,[]1)) .

V.Krishna Nandivada (IIT Madras)

q
q

(Y, 2
(X,2)) = XY

% empty queue

), a(Y,z2)).
), a(X,2)).

empty queue

CS3100 - Jul 2022

)) - X =

251/171

V.Krishna Nandivada (lIT Madras)

CS3100 - Jul 2022

250/171

Motivating Difference Lists

Recall
append ([],Q,0Q) .
append([H | P], Q, [H | R]) :- append(P,Q,R).

Ifrni=[(1,2,3] and L2=[4,5,6], append (L

Q: I
11 = [1,2,3 | A]
L2 = [4,5,6 | B]

append (L1, L2, X

V.Krishna Nandivada (IIT Madras)

) will derive x = [1,2,3,4,5,6]|B].

CS3100 - Jul 2022

252/171

Take from a List Sorted List

take (HasX, X, NoX) removes exactly one element X from the list

HasX with the result list being NoX. Check if a given list is sorted.
take([H|T],H,T). sorted ([]) .
take([H|T],R, [H|S]) :— take(T,R,S). sorted ([H]) .
sorted([A,B|T]) :— A =< B, sorted([B|T]).

Read the second clause as, “Given a list [H| T] you can take R from

the list and leave [H|S] if you can take R from T and leave s”.

?- sorted([1,2,3,4]).
?- take([1,2,31,1,Y).

true.
?- take([2,31,1,X).

?- sorted([1,3,2,4]).
?- take([1,2,3,1]1,X%X,Y).

Trace false.

- D aa)
\'A Krlshna Nandivada (lIT Madras) CS3100 - Jul 2022 253/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 254/171

Sort a list Quick Sort

part ([1,Y,[1,[1).
part ([X[|Xs],Y, [X|Ls],Rs) := X =< Y, part(Xs,Y,Ls,Rs).
part ([X[|Xs],Y,Ls, [X|IRs]) := X > Y, part(Xs,Y,Ls,Rs).
permsort (L, SL) :— perm(L,SL), sorted(SL). ?- part([6,5,3,2,1,01,4,X,Y).
?- permsort([1,3,5,2,4,6], SL). Yy=9[6, 51, X=123, 2, 1, 01
Too expensive to generate all permutations and search. quicksort ([H|T],SL) :-—

part (T,H,Ls,Rs),
quicksort (Ls, SLs),
quicksort (Rs, SRs),
append (SLs, [HISRs], SL) .
quicksort ([1,1[]).

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 255/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 256/171

Using Cut operator

/1 From geckstorgeeks $ If X > Y, max element is X and do not
@ In Prolog, the cut (!) is a special operator with two features: % check the next rule for the current goal

e Always succeeds. max_element (X, Y, X) := X > Y, !.
@ Cannot be backtracked.

If the first rule fails, then Y will
definitely be the max element.

max_element (X, Y, X) :— X > Y.
max_element (X, Y, Y) :— X =< Y.

o)
°
%

o

Execute max_element (5, 2, Ans). Therefore, no need to put conditionals anymore
Does not stop after checking the first rule. max_element (X, Y, Y).

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 257/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 258/171
With and Without cut One more example with Cut

is_memberl (X, [X | _1).

% If the head of the list is X Delete the first occurrence of an element from a list.

is_memberl (X, [_ | Rest]) :— is_memberl (X, Rest).

% else recur for the rest of the list delete_element (_, [, []).

Vs delete_element (X, [X | L], L) :— !.

is_member2 (X, [X | _1) := !.

delete_element (X, [Y | LI, [Y | L1]) :-
% If the head of the list is X

delete_element (X, L, L1).

is_member2 (X, [_ | Rest]) :- is_member?2 (X, Rest).
% else recur for the rest of the list

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 259/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 260/171

eval (plus(A,B),C) :— eval(A,VA), eval(B,VB), C is VA + VB.
eval (mult (A,B),C) :— eval(A,VA), eval(B,VB), C is VA = VB.
eval (A,A) .
?— eval (plus(l,mult (4,5)),X). p(a) .
p(b).
r(c).
eval2 (plus(A,B),C) :—= !, eval2(A,VA), eval2(B,VB), g (X) - p(X), !
C is VA + VB. g(Xx) :— r(x)
eval2 (mult (A,B),C) :— !, eval2(A,VA), eval2(B,VB),
C is VA * VB. ?-q(X).
eval2 (A,R) .
?— eval2(plus(l,mult (4,5)),X).
V.Krishna Nandivada (IIT Madras) ©S3100 - Jul 2022 261/171 V.Krishna Nandivada (IIT Madras) €S3100 - Jul 2022 262/171

p := a, b. p :=a, !, b.

p :— cC. p :— C.

Q 1.pe(anb)Vve. Q 1.pe(anb)Vve.

Q 1.pw (anb)Ac. Q 1.p<(anb)Ac.

Q 1.ps(anb)V(—anc). Q 1.pe (anb)V(—aAc).

Q 1.pean(bVve). Q 1.pan(bve).

Ans: 1 Ans: 3 Since the cut above changes the logical meaning of the

program, it is known as Red cut.

V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 263/171 V.Krishna Nandivada (lIT Madras) CS3100 - Jul 2022 264/171

split ([1,[],[1).
split ([H|T], [HIL],R) :— H < 5, !, split(T,L,R).
split ([H|T],L, [HIR]) :— H >= 5, split(T,L,R).

The cut in split does not change the logical meaning of the program.
Hence, it is called Green cut.

V.Krishna Nandivada (IIT Madras) CS3100 - Jul 2022 265/171

	Introduction
	Formalities
	Overview

	Imperative Languages
	Object Oriented Languages
	Functional Programming Languages
	The Scheme Language

	Data types and Interpreters
	Interpreters: Stack machine
	Environments for an interpreter
	Cells for Variables
	Closures
	Recursive environments

	Program Semantics
	Introduction
	Big Step Semantics
	Small Step Semantics

	Typed Lambda Calculus
	Simply Typed Lambda Calculus
	Parametric Polymorphism - System F

