
5/6/21

1

Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 1

CS1100
Introduction to Programming

Selection Statements

2

Decisions with Variables

• Need for taking logical decisions during
problem solving
– If b^2 – 4ac negative, we should report that the

quadratic has no real roots

• The if-else programming construct provides the
facility to make logical decisions

• Syntax: if (condition)
{ evaluate this part if true}

else
{ evaluate this part if false}

3

Conditions

• Specified using relational and equality operators
• Relational: >, <, >=, <=
• Equality: ==, !=
• Usage: for a,b values or variables

a > b, a < b, a >= b, a <= b, a == b, a != b
• A condition is satisfied or true, if the relational

operator, or equality is satisfied.
• For a = 3, and b = 5:

– a < b, a <= b, and a != b are true
– a > b, a >= b, a == b are false

4

Completing the program

if (discrim < 0)
{

printf(“no real roots, only complex\n”);
exit(1);

}
else

{

root1 = (−coeff2 + sqrt(discrim))/denom;
root2 = (−coeff2 − sqrt(discrim))/denom;

}

Terminates execution and
returns argument (1)

5/6/21

2

5

Statements
Statement: a logical unit of instruction/command
Program : declarations and one or more statements

assignment statement
selection statement
repetitive statements
function calls etc.

All statements are terminated by semicolon (;)
Note: In C, semi-colon is a statement terminator

rather than a separator!

6

Assignment statement
General Form:

variable “ = ” expression | constant “;”
The declared type of the variable should match the

type of the result of expression/constant
Multiple Assignment:

var1 = var2 = var3 = expression;
var1 = (var2 = (var3 = expression));

Assignment operator associates right-to-left.

7

Compound Statements
• A group of declarations and statements collected

into a single logical unit surrounded by braces
– a block or a compound statement

• “scope” of the variable declarations
– part of the program where they are applicable
– the compound statement

• variables come into existence just after declaration
• continue to exist till end of the block
• unrelated to variables of the same name outside the block
• block-structured fashion

8

An Example
{
int i, j, k;

i = 1; j =2; k =3;
if (i > 0) {
int i, k;

i = j;
printf(“i = %d\n”, i);

}
printf(“i = %d\n”, i);

}

This i and k and the previously
declared i and k are different.

Not a good programming style.
But allowed by C.

Note: No semicolon after }

A compound statement can appear wherever a
single statement may appear

// output is 2

// output is 1

5/6/21

3

9

An Example
{

int i, j, k, s;

i = 1; j =2; k =3;
if (i > 0) {
int i, k, q;
i = j;

printf(“i = %d\n”, i);
}
int i = k; // Error. Redeclaration of i.
printf(“i = %d %d\n”, i, q); // Error q’s scope is not here

}

This i and k and the previously
declared i and k are different.

Not a good programming style.
But allowed by C.

Note: No semicolon after }

// output is 2

10

Selection Statements
Three forms:

single selection:
if (att < 85) grade = ‘W’;

double selection:
if (marks < 40) passed = 0; /* false = 0 */

else passed = 1; /* true = 1 */

multiple selection:
switch statement - to be discussed later

no then reserved
word

11

If Statement
if (<expression>) <stmt1> [else <stmt2>]
if (<expression>) {<stmt1>} [else {<stmt2>}]
Semantics:

Expression evaluates to “true”
– stmt1 will be executed

Expression evaluates to “false”
– stmt2 will be executed

Else part is optional
Expression is “true” -- stmt1 is executed; else, no
action

12

Sequence and Selection Flowcharts

Single Entry
Single Exit

Sequence
Structure

If structuretrue

false

if - else structure

truefalse

5/6/21

4

13

Grading Example
Below 50: D; 50 to 59: C ; 60 to 75: B; 75 above: A
int marks;
char grade;
…
if (marks < 50) grade = ‘D’;
else if (marks <= 59) grade = ‘C’;
else if (marks <=75) grade = ‘B’;
else grade = ‘A’;

…

Note the semicolon
before else !

Unless braces are used, an else part
goes with the nearest else-less if stmt

14

Grading Example - 2
Below 50: D; 50 to 59: C ; 60 to 75: B; 75 above: A
int marks;
char grade;
…
If marks>75 then grade = ‘A’

else if marks>=60 grade=B
…

15

Grading Example - 2
Below 50: D; 50 to 59: C ; 60 to 75: B; 75 above: A
int marks;
char grade;
…
If(marks>75) grade=‘A’;
If((marks>=60) && (marks<=75)) grade=‘B’;
If((marks>=50) && (marks<=59)) grade=‘C’;

16

Objective

• Marks >= 40 -> Passed
• Marks < 40 -> Failed

• Objective 1 is changed to
add
• If Marks > 75, declare

Distinction
• No need to mention

Passed

if (marks >= 40)
printf(“you passed ”);

else printf(“you failed”);

5/6/21

5

17

Caution in use of “else”

if (marks > 40)
if (marks > 75) printf(“you got distinction”);

else printf(“you failed”);

if (marks > 40) {
if (marks > 75) printf(“you got distinction”);
else printf(“you passed\n”);

}
else printf(“you failed”);

/* WRONG – else goes
with second if */

/*RIGHT*/

18

In-class problem
Sl. No. JEE Rank JEEADV Rank SchoolMarks

(percentage)
Scholarship

1 1-100 101-200 96-100 10,000

2 1-100 201-400 96-100 5,000

3 101-200 101-200 91-100 3,000

4 101-200 201-300 91-100 1,000

All
other
cases

0

19

QUIZ 1 SYLLABUS ENDS HERE

20

Switch Statement
• A multi-way decision statement
• Syntax:

switch (expression) {
case const-expr : statements;
case const-expr : statements;

…
[default: statements;]

}

5/6/21

6

21

Switch-Case Example

Dice
Roll = 2 – 12
3 – Money back
7 – Double money
11 – Triple Money
12 – Half Money

22

Switch-Case Code

#include<stdio.h>
#include<math.h>

int main()
{
int roll;
printf(“Enter roll value:”);
scanf("%d", &roll);
switch (roll)
{
case 3: printf("Money back\n");
break;

case 7:
printf("Money double\n");
break;

case 11:
printf("Money triple\n");
break;

case 12:
printf("Money half\n");
break;

default:
printf("No money back!! Ha Ha\n");
break;

} // Close Switch
} // Close Main

23

Counting Evens and Odds
int num, eCount = 0, oCount = 0;
scanf (“%d”, &num);
while (num >= 0) {
switch (num%2) {
case 0: eCount++; break;
case 1: oCount++; break;

}
scanf (“%d”, &num);

}
printf(“Even: %d , Odd: %d\n”, eCount, oCount);

Counts the number of
even and odd integers in
the input. Terminated by
giving a negative number

24

Fall Through
• Switch statement:

– Execution starts at the matching case and falls through
the following case statements unless prevented
explicitly by break statement

– Useful for specifying one action for several cases

• Break statement:
– Control passes to the first statement after switch
– A feature requiring exercise of caution

5/6/21

7

25

Switch Statement Flowchart

true case a action(s)

false

case a

true case b action(s)

false

case b

case z action(s)

false

case z

default action(s)

true

Single Entry
Single Exit

No break

No break

break

break

break

26

Conditional Operator (?:)
• Syntax

(<expression>)? <stmt1>:<stmt2>
• Closely related to the if – else statement

if (<expression>) <stmt1> else <stat2>
• Only ternary operator in C
• E.g.:

(marks <40)? passed = 0 : passed = 1;
printf (“ passed = %d\n ”, (marks<40)?0:1);

27

Programming Problems
• Write a program to check if a given number is

prime.
• Write a program to count the number of digits in

a given number. Your answer should contain two
parts, number of digits before and after the
decimal. (Can you do this only with assignments
to variables, and decisions?)

