
6/11/21

1

Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 1

CS1100
Introduction to Programming

Searching in Arrays

Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 2

Random Q

Fill in the blanks:

int Sigma (int n) // Computes 1 + 2 + … + n
{

if (n == 1)
return(1);

return (n ____ Sigma(______));
}

Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 3

Searching

• Consider a lottery,
where tickets numbered
1 through 100 are sold.

• Let five tickets be
selected for a prize.

• You hold a ticket with
number (X, say 41).
– We need to know if your

number has won a prize.

• Store the 5 winning
numbers in an array

• Compare the array
elements one-by-one to
X.
– If X is in the array,

report “You won”
– Else, report “You Lost”

SD, PSK, NSN, DK, TAG – CS&E, IIT M 4

Searching for Elements
• Given an array of numbers, is the value X present

in the array?
– WinNumbers[] = {45, 2, 67, 23, 89};

• If X (say 23) occurs in the array, return the index
of the position where it occurs.

• If the numbers are not in sorted order, we have to
scan the entire array to search for an element.

6/11/21

2

Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 5

For loop for this ….
int SearchForNumber() {

int WinNumbers[5] = {45, 2, 67, 23, 89};
int num;
printf(“Enter your ticket number (1-100): “);
scanf(“%d”, &num);
for (int i = 0; i < 5; i++)

if (WinNumbers[i] = = num)
{

printf(“You won a prize!\n”); return i;
}

}
printf(“Sorry. You lost!\n”);
return -1;

}
Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 6

Random Q

• There is a sorted array with 1 Billion elements
(approx. 230)

1. If Linear Search is used, the worst-case
number of elements compared is:

2. If a Cleverer Search technique is used (yet to
be discussed in class), the worst-case number
of elements compared is: ______________

SD, PSK, NSN, DK, TAG – CS&E, IIT M 7

Linear Search (While loop)
int Linear Search(int value, int array[], int n){
// array[0], array[1], …, array[n-1]
int index = 0;
while (index < n){
if (array[index] == value) return index;
else index++;

}
return NOTFOUND; /*calling function must interpret

this correctly! */
} //Worst case: entire list is searched

SD, PSK, NSN, DK, TAG – CS&E, IIT M 8

Reducing Search Time

• In LinearSearch, the entire list is searched in the
worst case

• What if the list has 1 billion numbers?
• Can we reduce the search time?
• What if the list is always in sorted order

(DESCENDING)?
– int WinNumbers[5] = {89, 67, 45, 23, 2};
– List can be in ASCENDING order too

6/11/21

3

SD, PSK, NSN, DK, TAG – CS&E, IIT M 9

Searching in a Sorted Array
• Given an array of marks sorted in descending

order of marks, is there someone who got X
marks?

• If X is high (say 92/100), one could start
scanning from the left.

• If X is low (say 47/100), one could scan the array
right to left.

• But what if we do not know whether X is high or
low?

SD, PSK, NSN, DK, TAG – CS&E, IIT M 10

Divide and Conquer

• Look at the middle element
• If array[middle] = = X, done
• If array[middle] > X, look only in the

right(second) part
• Else look for the number only in the left (first)

part
• The problem is reduced into a smaller problem

– new problem is half the size of the original one
• Recursively apply this strategy

Largest Smallest

SD, PSK, NSN, DK, TAG – CS&E, IIT M 11

Divide and Conquer
• Two indexes define the range of searching

• If array[middle] > X look only in the right part

left rightmiddle = (left + right)/2

newLeft
= middle+1

rightnewMiddle

Largest

Largest

Smallest

SD, PSK, NSN, DK, TAG – CS&E, IIT M 12

Divide and Conquer
• Two indexes define the range of searching

• If array[middle] < X look only in the left part
left rightmiddle = (left + right)/2

Smallest

Largest

Largest

left newMiddle newRight
= middle - 1

6/11/21

4

SD, PSK, NSN, DK, TAG – CS&E, IIT M 13

Comparison outcomes

• if array[middle] < X
– left does not change

– right = middle -1

• if array[middle] > X
– left = middle + 1
– right does not change

• if array[middle] = X
– Found the element

SD, PSK, NSN, DK, TAG – CS&E, IIT M 14

Binary Search (also called Binary Chop)

• Starts with the full sorted array
– left = 0 and right = N-1

• The range of search are the elements between left
and right including array[left] and array[right]

• Search terminates if right < left (i.e. left > right)
• Otherwise

– If (array[middle] == X) return middle
– If (array[middle] > X) left = middle +1
– Else right = middle -1

SD, PSK, NSN, DK, TAG – CS&E, IIT M 15

Binary Search (list is in descending order)

int BinarySearch(int value, int array[], int n){
int left = 0, right = n-1;
while (left <= right){

middle = (left+right)/2;
if (array[middle] == value) return middle;
if (array[middle] > value) left = middle +1;
else right = middle -1;

}
return INVALID; /*e.g. -1, calling function must

interpret this correctly! */
}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 16

Example

• Array = {89, 78, 67, 56, 45, 34, 23, 12, 1}
• X = 12

1. left = 0; right = 8; left <= right
1. middle = 8/2 = 4; A[4] = 45; 45 > 12;
2. left = 5;

2. left = 5; right = 8; left <= right
1. middle = 13/2 = 6; A[6] = 23; 23 > 12;
2. left = 7;

3. left = 7; right = 8; left <= right
1. middle = 15/2 = 7; A[7] = 12; Found X in array!

0 1 2 3 4 5 6 7 8
89 78 67 56 45 34 23 12 1

6/11/21

5

SD, PSK, NSN, DK, TAG – CS&E, IIT M 17

Example-2
• Array = {89, 78, 67, 56, 45, 34, 23, 12, 1}
• X = 1

1. left = 0; right = 8; left <= right
1. middle = 8/2 = 4; A[4] = 45; 45 > 1;
2. left = 5;

2. left = 5; right = 8; left <= right
1. middle = 13/2 = 6; A[6] = 23; 23 > 1;
2. left = 7;

3. left = 7; right = 8; left <= right
1. middle = 15/2 = 7; A[7] = 12; 12 > 1;
2. Left = 8;

4. left = 8; right = 8; left <= right
1. middle = 16/2 = 8; A[8] = 1; X is found.

0 1 2 3 4 5 6 7 8
89 78 67 56 45 34 23 12 1

SD, PSK, NSN, DK, TAG – CS&E, IIT M 18

Example
• Array = {89, 78, 67, 56, 45, 34, 23, 12, 1}
• X = 80

1. left = 0; right = 8; left <= right
1. middle = 8/2 = 4; A[4] = 45; 45 < 80;
2. right = 3;

2. left = 0; right = 3; left <= right
1. middle = 3/2 = 1; A[1] = 78; 78 < 80;
2. right = 0;

3. left = 0; right = 0; left <= right
1. middle = 0/2 = 0; A[0] = 89; 89 > 80;
2. left = 1;

4. left = 1; right = 0; left > right
1. Terminate and report “X is not found in array”

0 1 2 3 4 5 6 7 8
89 78 67 56 45 34 23 12 1

SD, PSK, NSN, DK, TAG – CS&E, IIT M 19

Random Q

• Array = {89, 78, 67, 56, 45}
• X = 85

1. left = __; right = ___;
1. middle = ____;
2. Updated left or right pointer = ?

0 1 2 3 4
89 78 67 56 45

SD, PSK, NSN, DK, TAG – CS&E, IIT M 20

Complexity of Binary Search

After each inspection the array reduces by half. For an array of size
N there are about log2N inspections in the worst case.

6/11/21

6

SD, PSK, NSN, DK, TAG – CS&E, IIT M 22

Things not considered

• What if there are multiple elements in the list
with the same value?
– Which one will be reported by search?

• What if the array contains floating point
numbers?
– Equality is not always possible with such numbers

• What if the value compared is a string?
– strcmp() can be used

SD, PSK, NSN, DK, TAG – CS&E, IIT M 23

Binary Search (list is in ascending order)

int BinarySearch(int value, int array[], int n){
int left = 0, right = n-1;
while (left <= right){

middle = (left+right)/2;
if (array[middle] == value) return middle;
if (array[middle] < value) left = middle +1;
else right = middle -1;

}
return INVALID; /*calling function must interpret this

correctly! */
}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 24

Marks and Names
typedef struct {
char *name;
int mark;

} Student;

Student s1, s2;
Student s3 = { “Ramesh” , 79 };
Student studentarr[100];

name could itself be a struct made up
of first name, middle name and last
name…
Nested structures are allowed

SD, PSK, NSN, DK, TAG – CS&E, IIT M 25

Binary Search (list is in ascending order of names)

int BinarySearch(Student value, Student array[], int n){
int left = 0, right = n-1; int compresult;
while (left <= right){

middle = (left+right)/2;
compresult = strcmp(array[middle].name, value.name);
if (compresult = = 0) return middle;
if (compresult < 0) left = middle +1;
else right = middle -1;

}
return INVALID; /*calling function must interpret this

correctly! */
}

6/11/21

7

SD, PSK, NSN, DK, TAG – CS&E, IIT M 27

Exercises

• Modify the binary search to search in an array of
Student datatypes:
– Given a number X, return the name of at least one

student who has obtained marks X, if such a student
exists in the array

– Given student name Y, return the marks obtained by
the student, if the student name is in the array.

SD, PSK, NSN, DK, TAG – CS&E, IIT M 28

About GNU C Manual

• Want to know the syntax of C supported by
GCC: https://www.gnu.org/software/gnu-c-
manual/gnu-c-manual.pdf

