
5/20/21

1

Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 1

CS1100
Introduction to Programming

While; For and Do-While Loops

2

Repetitive Statements
• A very important type of statement

– iterating or repeating a set of operations

– a very common requirement in algorithms

• C offers three iterative constructs
– the while … construct
– the for construct

– the do … while construct

3

The while Construct
• General form:

while (<expr>) <statement>
• Semantics:

– repeat: Evaluate the “expr”
If the “expr” is true

execute the “statement”

else
exit the loop

• “expr” must be modified in the loop or we have
an infinite loop!

true

false

expr body

4

Computing 2n, n>=0, using while Construct
• Syntax – while (condition){ statement}
#include<stdio.h>
main()
{

int n, counter, value;
printf (“Enter value for n:”);
scanf (“%d”, &n);
value = 1;
printf (“current value is %d \n”, value);

5/20/21

2

5

Contd…
counter = 0; //Initialization
while (counter <= n) // Termination condition
{
value = 2 * value;
printf (“current value is %d \n”, value);
counter = counter + 1; // Update of variable

}
}

Exercise: try this
program and

identify problems

6

Testing the Program
• Choose test cases:

– A few normal values: n = 2, 5, 8, 11
– Boundary values: n = 0, 1
– Invalid values: n = –1

• Hand simulate the execution of the program
– On paper, draw a box for each variable and fill in the

initial values (if any)
– Simulate exec. of the program one statement at a time
– For any assignment, write the new value of the

variable in the LHS
– Check if the output is as expected in each test case

7

Hand Simulation
#include<stdio.h>
main()
{

int n, counter, value;
printf (“Enter value for n:”);
scanf (“%d”, &n);
value = 1;
printf (“current value is %d \n”,
value);

counter valuen

4 1

Current value is 1

8

0

Contd…
counter = 0;
while (counter <= n)
{
value = 2 * value;
printf (“current value is %d \n”, value);
counter = counter + 1;

}
}

counter valuen

4 1

Current value is 1

2

Current value is 2

1 4

Current value is 4

2 8

Current value is 8

3 16

Current value is 16

4 32

Current value is 32

5T

condition

F

5/20/21

3

9

Additional Q

Write a while loop condition that will only accept values from 15 to
25 and keeps prompting till the user enters a value in this range.

int n;
printf(“Enter a number between 15 and 25:”);��
scanf(“%d”, &n);
while ((n < 15) || (n > 25)) {

printf(“Enter a number between 15 and 25:”);
scanf(“%d”, &n);

}
printf(“%d”, n);

10

do while

int n;�
do {

printf(“Enter a number between 15 and 25:”);

scanf(“%d”, &n);
} while ((n < 15) || (n > 25));
printf(“%d”, n);

11

do while

Write a while loop condition that
print the sum of all numbers
input, until the number (sentinel)
-9999 is input.
int n,sum=0;�
do {

printf(“Enter a number ”);

scanf(“%d”, &n);
if (n != -9999) sum=sum+n;

} while (n!=-9999);
printf(“%d”, sum);

int n,sum=0;
printf(“Enter a number ”);

scanf(“%d”, &n);

While (n!=-9999)

{
sum=sum+n;

printf(“Enter a number ”);
scanf(“%d”, &n);

}

printf(“%d”, sum); 12

More on Loops
• Loop execution can be typically seens as being

controlled in one of the two ways: counter-
controlled and sentinel-controlled.

• Counter – loop runs till counter reaches its limit.
– Use it when the number of repetitions is known.

• Sentinel – loop runs till a certain condition is
encountered.
– For example – a \n (newline) is read from the input.
– Use it when the number of repetitions is a property of

the input and not of the problem being solved.

5/20/21

4

13

Reversing a Number: Methodology
• Print the reverse of a given integer:
• E.g.: 234 à 432
• Method: Till the number becomes zero,

– extract the last digit
– number modulo 10
– make it the next digit of the result

– multiply the current result by 10 and
– add the new digit

14

Reversing a Number: Illustration
• x is the given number
• y is the number being computed
• x = 56342 y = 0
• x = 5634 y = 0*10 + 2 = 2
• x = 563 y = 2*10 + 4 = 24
• x = 56 y = 24*10 + 3 = 243
• x = 5 y = 243*10 + 6 = 2436
• x = 0 y = 2436*10 + 5 = 24365

Termination condition: Stop
when x becomes zero y = y*10 + (x%10)x = x/10

15

Reversing a Number: Program
main(){

int x = 0, y = 0;
printf ("input an integer :\n");
scanf ("%d", &x);
while (x > 0){
y = y*10 + (x% 10);
x = (x / 10);

}
printf ("The reversed number is %d \n", y);

}

Remember integer division
truncates the quotient

16

Perfect Number Detection
• Perfect number – sum of proper divisors adds up to

the number
• Pseudocode:

– Read a number, A

– Set the sum of divisors to 1
– If A is divisible by 2, Add 2 to the sum of divisors
– If A is divisible by 3, Add 3 to the sum of divisors

…
– If A is divisible by A/2, Add A/2 to the sum of divisors
– If A is equal to the sum of divisors, A is a perfect

number

5/20/21

5

17

Refining the Pseudocode
• Read a number, A
• Set the sum of divisors to 1
• Set B to 2
• While B is less than or equal to A/2

– If A is divisible by B, Add B to the sum of divisors
– Increment B by 1

• If A is equal to the sum of divisors, A is a perfect
number

18

Perfect Number Detection
main (){

int d=2, n, sum=1;

scanf (“%d”, &n);
while (d <= (n/2)) {

if (n %d == 0)

sum += d;
d++;

}
if (sum == n) printf (“%d is perfect\n”, n);
else printf (“%d is not perfect\n”, n);

}

d<n will also do, but would
do unnecessary work

Exercise: Modify to find
the first n perfect numbers

19

for loops
• Counter controlled repetitions needs

– Initial value for the counter

– Modification of counter: i = i+1or i= i–1, or any other
arithmetic expression based on the problem, and

– Final value for the counter

• for repetition structure provides for the
programmer to specify all these

• Any statement written using for can be rewritten
using while

• Use of for helps make the program error free
20

The for construct
• General form:

for (expr1; expr2; expr3) <statement>
• Semantics:

– evaluate “expr1” - initialization operation(s)
– repeat - evaluate expression “expr2” and
– If “expr2” is true

• execute “statement” and “expr3”

– Else stop and exit the loop

5/20/21

6

21

Example Code with the while Construct
scanf(“%d”, &n);
value = 1;
printf (“current value is %d \n”, value);
counter = 0;
while (counter <= n){

value = 2 * value;
printf (“current value is %d \n”, value);
counter = counter + 1;

}
22

Example Code with the for Construct
scanf(“%d”, &n);
value = 1;
for (count = 0; count <=n; count=count+1){
if (count == 0) printf(“value is %d \n”,1);
else{

value = 2 * value;
printf(value is %d \n”, value);

}
}

• Observe: a mistake in the earlier program is gone

23

Computing the Sum of the First 20 Odd Numbers

int i, j, sum; sum = 0;
for (j = 1, i = 1; i <= 20; i = i+1){

sum += j;
j += 2;

}

Termination condition

Set j to the first odd number

i : Loop control variable

Increment sum by the ith odd number

Set j to the next odd number

24

String constants used to align
heading and output data in a table

Calculating Compound Interest
#include<stdio.h>
#include<math.h>
main(){
int yr;
double amt, principal = 1000.0, rate = .05;
printf(“%4s%10s\n”, “year”, “Amount”);
for (yr = 1; yr < = 10; yr++) {

amt = principal * pow(1.0 + rate, yr);
printf(“%4d%10.2f\n”, yr, amt);

}

a = p(1 + r)n

5/20/21

7

25

The do-while construct
• for and while check termination condition before

each iteration of the loop body
• Sometimes - execute the statement and check for

condition
• General form:

do {<statement>} while (expr);
• Semantics:

– execute the statement and check expr
– if expr is true, re-execute statement else exit

26

An Example
#include<stdio.h>
main()
{
int count = 1;
do{
printf(“%d\n”, count);

} while(++count <= 10);
return 0;
}

27

Find the Square Root of a Number
• How do we find the square root of a given

number N?
• We need to find the positive root of the

polynomial x2 – N
• Solve: x2 – N = 0

28

f(x)

√N

Newton–Raphson Method

f ' : the derivative of the function f

http://en.wikipedia.org/wiki/Newton's_method

f(x) = x2− N

xn+1 = xn – (xn
2 – N)/2xn

= (xn
2 + N)/2xn = (xn + N/xn)/2

By simple algebra we can derive

5/20/21

8

29

Square Root of a Number
int N;
double prevGuess, currGuess, error, sqRoot;

scanf(“%d”, &N);
currGuess = (float) N/2 ; error = 0.0001;
do{

prevGuess = currGuess; // prevG = x_n
currGuess = (prevGuess + N/prevGuess)/2;

} while (fabs(prevGuess – currGuess) > error);
sqRoot = currGuess;
printf(“%lf\n”, sqRoot);

30

Repetition Structures

Single Entry
Single Exit

true

false

while Structure

expr body

true

false do-while
Structure

expr

body

true

false for Structure

expr body

init

incr

31

Structured Programming
• To produce programs that are

– easier to develop, understand, test, modify
– easier to get correctness proof

• Rules
– Begin with the “simplest flowchart”
– Any action box can be replaced by two action boxes in

sequence
– Any action box can be replaced by any elementary structures

(sequence, if, if/else, switch, while, do-while or for)
– Rules 2 and 3 can be applied as many times as required and in

any order

32

Break and Continue
• break – breaks out of the innermost loop or

switch statement in which it occurs
• continue – starts the next iteration of the loop in

which it occurs

5/20/21

9

33

An Example

#include<stdio.h>
// Prints 1 2 3 4 and exits for loop
main (){

int i;
for (i = 1; i < 10; i = i+1){
if(i == 5)
break;

printf(“%4d”, i);
}

}
34

An Example

#include<stdio.h>
// Prints 1 2 3 4 6 7 8 9
main (){

int i;
for (i = 1; i < 10; i = i+1){

if (i == 5)
continue;

printf(“%4d”, i);
}

}

35

Find the Smallest Positive Number
#include<stdio.h>
int main (){

int n=0, smallNum = 10000;

printf(“Enter a non-negative number (0 to 9999): ”);
scanf(“%d”, &n);
while (n >= 0){

if (n < smallNum) smallNum = n;

printf(“Enter a non-negative number (0 to 9999): ”);
scanf(“%d”,&n);

}
printf(“Smallest number is %d\n”,smallNum);

}
36

Exercises
• Write a program that reads in the entries of a 3x3 matrix,

and prints it out in the form of a matrix. The entries
could be floating point too.

• Write a program that reads in orders of two matrices and
decides whether two such matrices can be multiplied.
Print out the decision.

• Write a program that reads in two matrices, and
multiplies them. Your output should be the two matrices
and the resulting product matrix.

• Compute sin (x), using Taylors expansion. Your answer
should be correct up to ‘k’ places of decimal. Where ‘k’
is an input value.

