CS1100: Introduction to Programming

Apr-Jun 2021 Trimester
V. Krishna Nandivada

Evaluation

- Two Quizzes - 20 marks each
- End semester - 20 marks.
- Lab: 40 marks.
- Attendance - taken in the lab and in lectures

Course Outline

- Introduction to Computing
- Programming (in C)
- Exercises and examples from the mathematical area of Numerical Methods
- Problem solving using computers

Class Hours

- Class meets 5 times a week.
- Monday: 2 pm to 3.15 pm (1.5LH)
- Tue: 3.25 pm to 4.40 pm (1.5 LH)
- Thu: 10.00am to 10.50 am (1LH)
- Fri: 9.00am to $9.50 \mathrm{am}(1 \mathrm{LH})$
- Lab
- Thu and Fri: $2-4.40 \mathrm{pm}$.

Policies

- Online classes
- You are the only one monitoring you.
- You are responsible for your learning.
- Be attentive in the class.
- Make it interactive to gain "points".
- Be honest in the exams and lab.
- Violators will be sent to DISCO.

Common uses of a Computer

- As a tool for storing and retrieving information
- Extracting and storing information regarding students entering IIT
- As a tool for providing services to customers
- Billing, banking, reservation
- As a calculator capable of user-defined operations
- Designing electrical circuit layouts
- Designing structures
- Non-destructive testing and simulation

What is this course about?

- Computer and its components
- Computing
- Programming Languages
- Problem Solving and Limitations of a Computer
\qquad

Memory storage on a Computer: Hierarchy

1. Registers (Small no. of registers in CPU) fastest memory, since it is close to CPU
2. Cache (faster memory, small capacity, e.g. 12 MB)
3. Main Memory (RAM) - slower than cache, a few nanonseconds to read a byte; limited capacity (e.g. 16GB ... 1TB)
4. Secondary Memory - slower than RAM; but very large capacity (e.g. 512 GB disk, 4 TB disk, etc.)

The Computing Machine

The computer consists of a processor and memory. The memory can be thought of as a series of locations to store information.

The Computing Machine

- A program is a sequence of instructions assembled for some given task
- Most instructions operate on data
- Some instructions control the flow of the operations

The Blocks, Their Functions

- Input unit
- Takes inputs from the external world via variety of input devices - keyboard, mouse, etc.

- Output Unit

- Sends information (after retrieving, processing) to output devices - monitors/displays, projectors, audio devices, etc.

More (try more filename on your Unix/Linux machine)

- Memory
- Place where information is stored
- Primary memory
- Electronic devices, used primarily for temporary storage
- Characterized by their speedy response
- Secondary Memory
- Devices for long-term storage
- Contained well tuned mechanical components, magnetic storage media - floppies, hard disks
- Compact Disks use optical technology

Some More (Commands are in /bin, /usr/bin. Use s)

- System Bus
- Essentially a set of wires, used by the other units to communicate with each other
- transfers data at a very high rate
- ALU - Arithmetic and Logic Unit
- Processes data - add, subtract, multiply, ...
- Decides - after comparing with another value, for example

Finally (check man $c p$, man $m v$, man $l s$, man $-k$ search string)

- Control Unit

- Controls the interaction among other units
- Knows each unit by its name, responds to requests fairly, reacts quickly on certain critical events
- Gives up control periodically in the interest of the system

Control Unit + ALU is called the CPU

The CPU (editors vi, emacs used to create text)

- Can fetch an instruction from memory
- Decode and Execute the instruction
- Store the result in memory
- A program - a set of instructions
- An instruction has the following structure

Operation operands destination

- A simple operation
$\mathbf{a d d} \mathbf{a}, \mathbf{b} \quad$ Adds the contents of register locations a and b and stores the result in register a

Instructions

- Instructions take data stored in variables as arguments
- Some instructions do some operation on the data and store it back in some variable
- e.g. The instruction " $\mathrm{X} \leftarrow \mathrm{X}+1$ " on integer type says that "Take the integer stored in X , add 1 to it, and store it back in (location) X"
- Other instructions tell the processor to do something
- e.g. "jump" to a particular instruction next, or to exit

Programs

- A program is a sequence of instructions
- Normally the processor works as follows,
- Step A: pick next instruction in the sequence
- Step B: get data for the instruction to operate upon
- Step C: execute instruction on data (or "jump")
- Step D: store results in designated location (variable)
- Step E: go to Step A
- Such programs are known as imperative programs

Programming Paradigms

- Imperative programs are sequences of instructions. They are abstractions of how the von Neumann machine operates
- Pascal, C, Fortran
- Object Oriented Programming Systems (OOPS) model the domain into objects and interactions between them
- Simula, CLOS, C++, Java
- Logic programs use logical inference as the basis of computation
- Prolog
- Functional programs take a mathematical approach of functions
- LISP, ML, Haskell
- Father(X, Y)
- Father(X, Z)
- Father(N, M)
- Rules:
- Sibling(A,B):- Father(J,A) and Father(J,B)
- Sibling(Y, M)? False
- Sibling(Z, Y)? True

$$
\begin{aligned}
& \text { Assembly language } \\
& \begin{array}{l}
\text { - An x86/IA-32 processor can execute the } \\
\text { following binary instruction as expressed in } \\
\text { machine language: } \\
\text { Binary: } \underbrace{10110000}_{\text {mov al, }} \underbrace{01100001}_{061 \mathrm{~h}} \\
\text { - Move the hexadecimal value } 61 \text { (} 97 \text { decimal) into the } \\
\text { processor register named "al". } \\
\text { - Assembly language representation is easier to } \\
\text { remember (mnemonic) }
\end{array} \\
& \text { From Wikipedia }
\end{aligned}
$$

Example Assembly Code (Z80 microprocessor)

LD A,5	$\mathrm{A}=5$
ADD A,3	$\mathrm{A}=\mathrm{A}+3 \quad(\mathrm{~A}=8)$
LD B, 4	$\mathrm{~B}=4$
ADD A, B	$\mathrm{A}=\mathrm{A}+\mathrm{B}(\mathrm{A}=12)$
LD A, D	$\mathrm{D}=\mathrm{A}$

ADD A, B
LD A, D
$\mathrm{D}=\mathrm{A}$

Higher Level Languages

- Higher level statement = many assembly instructions
- For example " $\mathrm{X}=\mathrm{Y}+\mathrm{Z}$ " could require the following sequence
- Fetch the contents of Y into R1
- Fetch the contents of Z into R2
- Add contents of R1 and R2 and store it in R1
- Move contents of R1 into location named X

DATA REPRESENTATION

Number Systems

- Decimal: 0 .. 9
- Binary: 01
- Octal: 0 .. 7
- Hexadecimal: 0 .. 9 A B C D E F
- FEED -

Two-bit binary numbers

- 00
- 01
- $10=2$ (base 10$)$
- $11=3$ (base 10)
- N bits: $2^{\wedge} \mathrm{n}$ numbers

4-bit binary numbers (Base 16:
 Hexadecimal)

- $0000: 0$	- $1000: 8$
- 0001	- $1001: 9$
- 0010	- $1010: \mathrm{A}$
- 0011	- $1011: \mathrm{B}$
- 0101	- $1100: \mathrm{C}$
- 0110	- $1101: \mathrm{D}$
- $0111: 7$	- $1110: \mathrm{E}$

- 789 base $10=7^{*} 10^{\wedge} 2+8 * 10^{\wedge} 1+9^{*} 10^{\wedge} 0$
- 11011 base $2=1^{*} 2^{\wedge} 4+1 * 2^{\wedge} 3+0^{*} 2^{\wedge} 2+1^{*} 2^{\wedge} 1+1^{*} 2^{\wedge} 0=$
- $16+8+0+2+1=27$
- 11011 base $10=11011$
- 11011 base $8=4617$
- There are 10 kind of people in the world: those who understand binary and those who dont

Decimal to Binary Conversion

Convert (39) ${ }_{10}$ to binary form

Base $=2$		
2	39	$39=2 * 19+1$
2	$\underline{19}+$ Remainder l	$=2^{*}\left(2^{*} 9+1\right)+1$
2	$9+$ Remainder 1	$\begin{aligned} & =2^{2 *}+2^{1 *} 1+1 \\ & =2^{2 *}\left(2^{*} 4+1\right)+2^{1 *} * 1+1 \end{aligned}$
2	$4+$ Remainder 1	$=2^{3 *} 4+2^{2 *} 1+2^{* *} 1+1$
2	$2+$ Remainder 0	$=2^{3 *}\left(2^{*} 2+0\right)+2^{2 *} 1+2^{1 *} 1+1$
2	1 + Remainder 0	$\begin{aligned} & =2^{4 *} 2+2^{3 *} 0+2^{2 *} 1+2^{1} \\ & =2^{4 *}\left(2^{*} 1+0\right)+\ldots \end{aligned}$
	0 + Remainder 1	$=2^{5 *} 1+2^{4 *} 0+2^{3 *} 0+2^{2 *} 1+2^{1 *} 1+1$

Put the remainders in reverse order: (100111) $\mathbf{2}_{2}$

$$
\begin{aligned}
& (100111)_{2}=\left(1 \times 2^{5}\right)+\left(0 \times 2^{4}\right)+\left(0 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right) \\
& \quad=(39)_{10}
\end{aligned}
$$

Largest number that can be stored in m-digits

$$
\begin{array}{cc}
\text { base }-10: & (99999 \ldots 9)=10^{\mathrm{m}}-1 \\
\text { base }-2: & (11111 \ldots 1)=2^{\mathrm{m}}-1 \\
\mathrm{~m}=3 & (999)=10^{3}-1 \\
& (111)=2^{3}-1
\end{array}
$$

Limitation: Memory cells consist of 8 bits (1 byte) multiples, each position containing 1 binary digit

Sign - Magnitude Notation

Common cell lengths for integers : $\mathrm{k}=16$ or 32 or 64 bits
First bit is used for a sign
0 - positive number
1 - negative number
The remaining bits are used to store the binary magnitude of the number.

Limit of 16 bit cell : $(32,767)_{10}=\left(2^{15}-1\right)_{10}$ Limit of 32 bit cell : $(2,147,483,647)_{10}=\left(2^{31}-1\right)_{10}$

Signed numbers

- $\mathrm{M}=3$	- $100:-0$
- MSB is $0:$ positive number	- $101:-1$
- MSB is 1: negative number	- $110:-2$
- $000:+0$	- $111:-3$
- $001: 1$	
- $010: 2$	
- $011: 3$	

One's Complement Notation

In the one's complement method, the negative of integer n is represented as the bit complement of binary n
E.g. : One's Complement of $(3)_{10}$ in a 3 - bit cell
complement of 011: 100
-3 is represented as $=(100)_{2}$
Arithmetic requires care:
$2+(-3)=010+100=110-$ ok
But, $3+(-2)=011+101=000$ and carry of 1 need to add back the carry to get 001 !

NOT WIDELY USED

000 : 0
001: +1
$010:+2$
011: +3
100: -3
101: -2
110:-1
111: -0
Zero has two representations!

8 bit number

What is -23 in one's complement form?
23: 00010111
-23: 11101000

Add these two:
0: 11111111

Two's Complement Notation
In the two's complement method, the negative of integer n
in a k - bit cell is represented as $2^{k}-n$
Two's Complement of $n=\left(2^{k}-n\right)$
E.g. : Two's Complement of $(3)_{10}$ in a $3-$ bit cell
-3 is represented as $\left(2^{3}-3\right)_{10}=(5)_{10}=(101)_{2}$
Arithmetic requires no special care:
$2+(-3)=010+101=111-$ ok
$3+(-2)=011+110=001$ and carry of 1
we can ignore the carry!
WIDELY USED METHOD for - ve numbers

Two's Complement Notation

The Two's Complement notation admits one more negative number than the sign - magnitude notation.

To get back n, read off the sign from the MSB
If -ve , to get magnitude, complement the cell and 001 add 1 to it!
E.g.: $101 \rightarrow 010 \rightarrow 011=(-3)_{10}$

Binary addition

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1 \\
& 1+1=10
\end{aligned}
$$

Numbers with Fractions
Integer Part + Fractional Part
Decimal System - base 10
235 . 7846
Binary System - base 2
$10011.11101=(19.90625)_{10}$
Fractional Part $(0.7846)_{10}=\frac{7}{10}+\frac{8}{10^{2}}+\frac{4}{10^{3}}+\frac{6}{10^{4}}$
Fractional Part $(0.11101)_{2}=\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{0}{2^{4}}+\frac{1}{2^{5}}=0.90625$
49

Binary Fraction to Decimal Fraction

$(10.11)_{2}$

$$
\text { Integer Part }(10)_{2}=1 * 2^{1}+0 * 2^{0}=2
$$

Fractional Part $(11)_{2}=1^{*} 2^{\wedge}(-1)+1 * 2^{\wedge}(-2)=1 / 2+1 / 4=$ 0.75

Decimal Fraction $=(2.75)_{10}$

Decimal Fraction to Binary Fraction (2)

Convert (0.9) ${ }_{\mathbf{1 0}}$ to binary fraction

Fixed Versus Floating Point Numbers

Fixed Point: position of the radix point is fixed and is same for all numbers
E.g.: With 3 digits after decimal point:

$$
0.120 * 0.120=0.014
$$

A digit is lost!!
Floating point numbers: radix point can float

$$
1.20 \times 10^{-1} * 1.20 \times 10^{-1}=1.44 * 10^{-2}
$$

Floating point system allows a much wider range of values to be represented

Scientific Notation (Decimal)

$$
\begin{gathered}
0.0000747=7.47 * 10^{-5} \\
31.4159265=3.14159265 * 10^{1} \\
9,700,000,000=9.7 * 10^{9}
\end{gathered}
$$

Binary

$$
\begin{aligned}
& (10.01)_{2}=(1.001)_{2} * 2^{1} \\
& (0.110)_{2}=(1.10)_{2} * 2^{-1}
\end{aligned}
$$

Binary Arithmetic

Half Adder	Bit 0	Bit 1		Carry	Sum
	0	0		0	0
	0	1		0	1
	1	0		0	1
	1	1		1	0
Full Adder	Carry In	Bit 0	Bit 1	Carry Out	Sum
	0	0	0	0	0
	0	0	1	0	1
	0	1	0	0	1
	0	1	1	1	0
	1	0	0	0	1
	1	0	1	1	0
	1	1	0	1	0
	1	1	1	1	1

Number Representations for a 4-bit number							
Binary Number	Sign- Mag.	One's Compl.	Two's Compl.	Binary Number	Sign- Mag.	One's Compl.	Two's Compl.
0000	0	0	0	1000	0	-7	-8
0001	1	1	1	1001	-1	-6	-7
0010	2	2	2	1010	-2	-5	-6
0011	3	3	3	1011	-3	-4	-5
0100	4	4	4	1100	-4	-3	-4
0101	5	5	5	1101	-5	-2	-3
0110	6	6	6	1110	-6	-1	-2
0111	7	7	7	1111	-7	0	-1

How to Convert a k-bit One's Complement number to decimal

- Let y denote unsigned decimal value of all k bits
- $\mathrm{MSB}=0$
- Decimal Number $=+\mathbf{y}$
- $\mathrm{MSB}=1$
- Decimal Number $=\mathbf{-}\left(\mathbf{2}^{\mathrm{k}}-\mathbf{y} \mathbf{- 1}\right)$
- ALT: Flip all bits; Let z be this bit-string's value; Decimal Number $=\mathbf{- z}$

How to Convert a k-bit Two's Complement number to decimal

- Let y denote unsigned decimal value of all k bits
- $\mathrm{MSB}=0$
- Decimal Number $=+\mathbf{y}$
- $\mathrm{MSB}=1$
- Decimal Number $=-\left(2^{\mathbf{k}}-\mathbf{y}\right)$
- 0101 (Base 2) $=+5$ (Base 10)
- $1101($ Base 2$)=-(16-13)=-3($ Base 10)
- 0101 (Base 2) $=+5$ (Base 10)
- 1101 (Base 2) $=-(16-13-1)=-2$ (Base 10)

Numb er of Bits	Unsigned	Sign-Magnitude	One's Complement	Two's Complement
4	0 to 15	-7 to +7	-7 to +7	-8 to +7
8	0 to 255	-127 to +127	-127 to +127	-128 to +127
16	0 to 65535	-32767 to +32767	-32767 to +32767	-32768 to +32767
32	0 to $2^{32}-1$	$-\left(2^{31}-1\right)$ to $\left(2^{31}-1\right)$	$-\left(2^{31}-1\right)$ to $\left(2^{31}-1\right)$	-2^{31} to $\left(2^{31}-1\right)$
N				

- If you add two positive numbers and result is negative, overflow has occurred
- If you add two neg. numbers and result is positive, underflow has occurred

Data Representation

- Integers - Fixed Point Numbers

$$
\frac{\text { Decimal System - Base } 10 \quad \text { uses } 0,1,2, \ldots, 9}{(396)_{10}=\left(3 \times 10^{2}\right)+\left(9 \times 10^{1}\right)+\left(6 \times 10^{0}\right)=(396)_{10}}
$$

Binary System - Base 2

uses 0,1

$$
\begin{aligned}
& (11001)_{2}=\left(1 \times 2^{4}\right)+\left(1 \times 2^{3}\right)+\left(0 \times 2^{2}\right)+\left(0 \times 2^{1}\right)+(1 \times \\
& \left.2^{0}\right) \\
& =(25)_{10}
\end{aligned}
$$

Courses related to topics mentioned in Week 1

- CS2300 - Foundations of Computer Systems
- CS2600 - Computer Organization
- CS3100 - Paradigms of Programming
- CS3300 - Compiler Design
- CS3500 - Operating Systems

