

Course Material - SD, SB, PSK, NSN, DK, TAG - CS&E, IIT M

1

3

Course Outline

- Introduction to Computing
- Programming (in C)
- Exercises and examples from the mathematical area of Numerical Methods
- Problem solving using computers

Course Material - SD, SB, PSK, NSN, DK, TAG - CS&E, IIT M

2

4

Evaluation

- Two Quizzes 20 marks each
- End semester 20 marks.
- Lab: 40 marks.
- Attendance taken in the lab and in lectures

Course Material - SD, SB, PSK, NSN, DK, TAG - CS&E, IIT M

Class Hours

- Class meets 5 times a week.
 - Monday: 2pm to 3.15 pm (1.5LH)
 - Tue: 3.25pm to 4.40pm (1.5LH)
 - Thu: 10.00am to 10.50am (1LH)
 - Fri: 9.00am to 9.50am (1LH)
- Lab
 - Thu and Fri: 2 4.40pm.

Course Material - SD, SB, PSK, NSN, DK, TAG - CS&E, IIT M

Policies

• Online classes

- You are the only one monitoring you.
- You are responsible for your learning.
- Be attentive in the class.
 - Make it interactive to gain "points".
- Be honest in the exams and lab.
 - Violators will be sent to DISCO.

What is this course about?

- Computer and its components
- Computing

6

- Programming Languages
- Problem Solving and Limitations of a Computer

Common uses of a Computer

- As a tool for storing and retrieving information
 - Extracting and storing information regarding students entering IIT
- As a tool for providing services to customers
 Billing, banking, reservation
- As a calculator capable of user-defined operations
 - Designing electrical circuit layouts
 - Designing structures
 - Non-destructive testing and simulation

What is a Computer?

- A computer is a *programmable machine*
- Its behavior is controlled by a program
- Programs reside in the *memory* of the machine – "*The stored program concept*"

Memory storage on a Computer: Hierarchy

- 1. Registers (Small no. of registers in CPU) fastest memory, since it is close to CPU
- 2. Cache (faster memory, small capacity, e.g. 12MB)
- 3. Main Memory (RAM) slower than cache, a few nanonseconds to read a byte; limited capacity (e.g. 16GB ... 1TB)
- 4. Secondary Memory slower than RAM; but very large capacity (e.g. 512 GB disk, 4 TB disk, etc.)

The Blocks, Their Functions

• Input unit

- Takes inputs from the external world via variety of input devices - *keyboard, mouse, etc.*

• Output Unit

 Sends information (after retrieving, processing) to output devices – monitors/displays, projectors, audio devices, etc.

More (try *more filename* on your Unix/Linux machine)

• Memory

- Place where information is stored
- Primary memory
 - · Electronic devices, used primarily for temporary storage
 - Characterized by their speedy response

- Secondary Memory

- Devices for long-term storage
- Contained well tuned mechanical components, magnetic storage media floppies, hard disks

17

· Compact Disks use optical technology

Some More (Commands are in /bin, /usr/bin. Use ls)

- System Bus
 - Essentially a set of wires, used by the other units to communicate with each other
 - transfers data at a very high rate
- ALU Arithmetic and Logic Unit
 - Processes data add, subtract, multiply, ...
 - Decides after comparing with another value, for example

Finally (check man cp, man mv, man ls, man -k search string)

Control Unit

- Controls the interaction among other units
- Knows each unit by its name, responds to requests fairly, reacts quickly on certain critical events
- Gives up control periodically in the interest of the system

Control Unit + ALU is called the CPU

The CPU (editors vi, emacs used to create text)

- Can *fetch* an instruction from memory
- *Decode and Execute* the instruction
- Store the result in memory
- A *program* a set of instructions
- An instruction has the following structure *Operation operands destination*
- A simple operation add a, b Adds the contents of register locations a and b and stores the result in register a

Variables (stored in Memory)

- Data is represented as binary strings
 - It is a sequence of 0's and 1's (bits), of a predetermined size – "word". A *byte* is made of 8 *bits*.
- Each memory location may be given a *name*.
- The name is the *variable* that refers to the data stored in that location
 - e.g. rollNo, classSize
- Variables have *types* that define the interpretation of data
 - e.g. integers (1, 14, 25649), or characters (a, f, G, H)

Instructions

19

21

- Instructions take data stored in variables as arguments
- Some instructions do some operation on the data and store it back in some variable
- Other instructions tell the processor to do something
 - e.g. "jump" to a particular instruction next, or to exit

Programs

- A program is a sequence of instructions
- Normally the processor works as follows,
 - Step A: pick next instruction in the sequence
 - Step B: get data for the instruction to operate upon
 - Step C: execute instruction on data (or "jump")
 - Step D: store results in designated location (variable)
 - Step E: go to Step A
- Such programs are known as *imperative programs*

23

25

Programming Paradigms

- *Imperative programs* are sequences of instructions. They are abstractions of how the *von Neumann machine* operates
 - Pascal, C, Fortran
- Object Oriented Programming Systems (OOPS) model the domain into objects and interactions between them
 Simula, CLOS, C++, Java
- *Logic programs* use logical inference as the basis of computation
 - Prolog
- *Functional programs* take a mathematical approach of functions
 - LISP, ML, Haskell

24

• Father(X, Y)

- Father(X, Z)
- Father(N, M)
- Rules:
 - Sibling(A,B):- Father(J,A) and Father(J,B)
- Sibling(Y, M)? False
- Sibling(Z, Y)? True

Assembly language

- An x86/IA-32 processor can execute the following binary instruction as expressed in machine language:
 Binary: 10110000 01100001 mov al, 061h
 - Move the hexadecimal value 61 (97 decimal) into the processor register named "al".
 - Assembly language representation is easier to remember (*mnemonic*)

From Wikipedia

27

29

Example Assembly Code (Z80 microprocessor)

LD A,5	A=3
ADD A,3	A = A + 3 (A = 8)
LD B, 4	B=4
ADD A, B	A=A+B (A=12)
LD A, D	D=A

28

Higher Level Languages

- Higher level statement = many assembly instructions
- For example "X = Y + Z" could require the following sequence
 - Fetch the contents of Y into R1
 - Fetch the contents of Z into R2 $\,$
 - Add contents of R1 and R2 and store it in R1
 - Move contents of R1 into location named X

Number Systems

- Decimal: 0 .. 9
- Binary: 01
- Octal: 0 .. 7
- Hexadecimal: 0 .. 9 A B C D E F
- FEED -

Two-bit binary numbers

- 00
- 01
- 10 = 2 (base 10)
- 11 = 3 (base 10)
- N bits: 2ⁿ numbers

32

; _	bit binary	v numbe	ers		
	000				
	001				
	010				
	011				
	100				
	101				
	110				
	111				
					34

4-bit binary	numbers (Base 16:
Hexadecima	I)
• 0000: 0	• 1000: 8
• 0001	• 1001:9
00100011	• 1010: A
• 0100	• 1011: B
01010110	• 1100: C
• 0111:7	• 1101: D
	• 1110: E
	• 1111: F
	35

• 789 base $10 = 7*10^2 + 8*10^1 + 9*10^0$

- 11011 base $2 = 1 \cdot 2^{4} + 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0} =$
- 16+8+0+2+1=27
 11011 base 10 = 11011
- 11011 base 8 = 4617
- There are 10 kind of people in the world: those who understand binary and those who dont

36

38

Steps to convert decimal to binary 98 base 10 = 1100010 base 2 Given X

```
i = 0
Loop until ( X != 0 )
D[i] = X mod 2
X = X / 2 ;; Quotient
i = i + 1
end
```

Largest number that can be stored in m-digitsbase - 10 : $(99999...9) = 10^m - 1$ base - 2 : $(11111...1) = 2^m - 1$ m = 3 $(999) = 10^3 - 1$ $(111) = 2^3 - 1$ Limitation:Memory cells consist of 8 bits (1 byte)multiples, each position containing 1 binary digit

Sign - Magnitude Notation

Common cell lengths for integers : k = 16 or 32 or 64 bits

First bit is used for a sign

0 – positive number

1 – negative number

The remaining bits are used to store the binary magnitude of the number.

Limit of 16 bit cell : $(32,767)_{10} = (2^{15} - 1)_{10}$

Limit of 32 bit cell : $(2,147, 483,647)_{10} = (2^{31} - 1)_{10}$

40

Signed numbers

•	M = 3	•	100 : -0
	MSB is 0: positive number		101.1
	MSB is 1: negative number	•	1011
	000 : +0	•	110 :-2
	001:1	•	111: -3
	010: 2		
	011:3		

41

In the one's complement method, the negativ is represented as the bit complement of	e of integer <i>n</i> of binary <i>n</i>
E.g. : One's Complement of (3) ₁₀ in a 3 - bit cell	000: 0 001: +1
complement of 011: 100	010: +2
-3 is represented as = $(100)_2$	011 : +3 100 : -3
Arithmetic requires care:	101 : -2
2 + (-3) = 010 + 100 = 110 - ok	110 : -1 111 : -0
But, $3 + (-2) = 011 + 101 = 000$ and carry of 1	Zero has two
need to add back the carry to get 001!	representation
NOT WIDELY USED	47

8 bit number

What is -23 in one's complement form?

23: 00010111

-23: 11101000

Add these two: 0: 11111111

1

In the two's complement method, the negative in a k - bit cell is represented as 2^k –	of integer <i>n</i> <i>n</i>
Two's Complement of $n = (2^k - n)$ E.g. : Two's Complement of $(3)_{10}$ in a 3 - bit cell -3 is represented as $(2^3 - 3)_{10} = (5)_{10} = (101)_2$	
Arithmetic requires no special care: 2 + (-3) = 010 + 101 = 111 - 0k 3 + (-2) = 011 + 110 = 001 and carry of 1 we can ignore the carry! WIDELY USED METHOD for -ve numbers	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Two's Complement Notation

The Two's Complement notation admits one more negative number than the sign - magnitude notation.

To get back <i>n</i> , read off the sign from the MSB	000 :	0
If -ve, to get magnitude, complement the cell and add 1 to it!	001 : 010 : 011 :	+1 +2 +3
E.g.: $101 \rightarrow 010 \rightarrow 011 = (-3)_{10}$	100 : 101 : 110 : 111 :	-4 -3 -2 -1
		46

Two's complement	
m = 3	000 0
	001 1
011	010 2
One's complement: 100	011 3
Add 1: 100+ 1 = 101 (-3)	100 -4
-1: 001 -> 110 + 1 = 111	101 -3
-2: 010 -> 101 + 1 =	110 -2
	111 -1
	47

Binary addition	
0 + 0 = 0	
0 + 1 = 1	
1 + 0 = 1	
1 + 1 = 10	
	48

Binary Fraction **to** Decimal Fraction

 $(10.11)_2$

Integer Part $(10)_2 = 1 \cdot 2^1 + 0 \cdot 2^0 = 2$

Fractional Part $(11)_2 = 1*2^{(-1)} + 1*2^{(-2)} = \frac{1}{2} + \frac{1}{4} = 0.75$

Decimal Fraction = $(2.75)_{10}$

Fixed Point: position of the radix point is fixed and is same for all numbers

E.g.: With 3 digits after decimal point: 0.120 * 0.120 = 0.014A digit is lost!!

Floating point numbers: radix point can float $1.20 \times 10^{-1} \times 1.20 \times 10^{-1} = 1.44 \times 10^{-2}$

Floating point system allows a much wider range of values to be represented

53

 $0.0000747 = 7.47 * 10^{-5}$ $31.4159265 = 3.14159265 * 10^{1}$ $9,700,000,000 = 9.7 * 10^{9}$

Binary

 $(10.01)_2 = (1.001)_2 * 2^1$ $(0.110)_2 = (1.10)_2 * 2^{-1}$

Binar	y Arith	metic						
Half	Bit 0	Bit	l	0	Carry		Sum	
Adder	0	0	0		0		0	
	0	1		0			1	
	1	0			0		1	
	1	1			1		0	
	Carry In	Bit 0	Bi	t 1	Carry O	ut	Sum	
	0	0		0	0		0	
Full	0	0		1	0		1	
Adder	0	1		0	0		1	
	0	1		1	1		0	
	1	0	(0	0		1	
	1	0		1	1		0	
	1	1		0	1		0	
	1	1		1	1		1	

Binary Number	Sign- Mag.	One's Compl.	Two's Compl.	Binary Number	Sign- Mag.	One's Compl.	Two's Compl.
0000	0	0	0	1000	0	-7	-8
0001	1	1	1	1001	-1	-6	-7
0010	2	2	2	1010	-2	-5	-6
0011	3	3	3	1011	-3	-4	-5
0100	4	4	4	1100	-4	-3	-4
0101	5	5	5	1101	-5	-2	-3
0110	6	6	6	1110	-6	-1	-2
0111	7	7	7	1111	-7	0	-1

How to Convert a k-bit Sign-Magnitude number to decimal

- If MSB = 0, let x denote decimal value of remaining (k-1) bits
 - Decimal Number = +x
- If MSB = 1, let x denote decimal value of remaining (k-1) bits

58

60

- Decimal Number = -x
- **0110** (Base 2) = +6 (Base 10)
- **1010** (Base 2) = -2 (Base 10)

How to Convert a k-bit One's Complement number to decimal

- Let y denote unsigned decimal value of all k bits
- MSB = 0
 - Decimal Number = +y
- MSB = 1
 - Decimal Number = -(2^k-y-1)
 - ALT: Flip all bits; Let z be this bit-string's value; Decimal Number = -z
- 0101 (Base 2) = +5 (Base 10)
- 1101 (Base 2) = -(16-13-1) = -2 (Base 10)

How to Convert a k-bit Two's Complement number to decimal

- Let y denote unsigned decimal value of all k bits
- MSB = 0
 - Decimal Number = +y
- MSB = 1

- Decimal Number = -(2^k-y)
- 0101 (Base 2) = +5 (Base 10)
- 1101 (Base 2) = -(16-13) = -3 (Base 10)

Numb er of Bits	Unsigned	Sign-Magnitude	One's Complement	Two's Complement
4	0 to 15	-7 to + 7	-7 to +7	-8 to +7
8	0 to 255	-127 to +127	-127 to +127	-128 to +127
16	0 to 65535	-32767 to +32767	-32767 to +32767	-32768 to +32767
32	0 to 2 ³² - 1	$-(2^{31}-1)$ to $(2^{31}-1)$	$-(2^{31}-1)$ to $(2^{31}-1)$	-2^{31} to $(2^{31} - 1)$
lf yo If yo	u add two po u add two ne _i	sitive numbers and result g. numbers and result	sult is negative, overf is positive, underflov	low has occurred v has occurred

Courses related to topics mentioned in Week 1

• CS2300 – Foundations of Computer Systems

- CS2600 Computer Organization
- CS3100 Paradigms of Programming
- CS3300 Compiler Design
- CS3500 Operating Systems