
4/14/21

1

Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 1

CS1100: Introduction to
Programming

Apr-Jun 2021 Trimester

V. Krishna Nandivada

Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 2

Course Outline
• Introduction to Computing

• Programming (in C)

• Exercises and examples from the mathematical
area of Numerical Methods

• Problem solving using computers

Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 3

Evaluation

• Two Quizzes – 20 marks each

• End semester – 20 marks.

• Lab: 40 marks.

• Attendance – taken in the lab and in lectures

Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 4

Class Hours
• Class meets 5 times a week.

• Monday: 2pm to 3.15 pm (1.5LH)
• Tue: 3.25pm to 4.40pm (1.5LH)
• Thu: 10.00am to 10.50am (1LH)
• Fri: 9.00am to 9.50am (1LH)

• Lab
– Thu and Fri: 2 – 4.40pm.

4/14/21

2

6

Policies

• Online classes
– You are the only one monitoring you.
– You are responsible for your learning.

• Be attentive in the class.
• Make it interactive to gain “points”.

• Be honest in the exams and lab.
• Violators will be sent to DISCO.

7

What is this course about?

• Computer and its components

• Computing

• Programming Languages

• Problem Solving and Limitations of a Computer

8

Common uses of a Computer

• As a tool for storing and retrieving information
– Extracting and storing information regarding students

entering IIT

• As a tool for providing services to customers
– Billing, banking, reservation

• As a calculator capable of user-defined
operations
– Designing electrical circuit layouts
– Designing structures
– Non-destructive testing and simulation

9

What is a Computer?
• A computer is a programmable machine
• Its behavior is controlled by a program
• Programs reside in the memory of the machine

– “The stored program concept”

Von Neumann Alan Turing

Charles Babbage

4/14/21

3

10

2008-19: Intel Core i7 Processor
Clock speed: 2.9 – 4.2 GHz
No. of Transistors: 1-8Billion
Technology: 45-10nm CMOS
Area: 100-485 mm2

Core i7 Processor (desktop version)

11

Memory storage on a Computer: Hierarchy

1. Registers (Small no. of registers in CPU) –
fastest memory, since it is close to CPU

2. Cache (faster memory, small capacity, e.g.
12MB)

3. Main Memory (RAM) – slower than cache, a
few nanonseconds to read a byte; limited
capacity (e.g. 16GB … 1TB)

4. Secondary Memory – slower than RAM; but
very large capacity (e.g. 512 GB disk, 4 TB
disk, etc.)

12

The Computing Machine

PROCESSOR

The computer consists of a processor and
memory. The memory can be thought of as a
series of locations to store information.

MEMORY

01234……. (say) 256
MEGABYTES

13

PROCESSOR

•A program is a sequence of instructions assembled
for some given task
• Most instructions operate on data
• Some instructions control the flow of the operations

MEMORY

01234……. 8
GIGABYTES

program data

The Computing Machine

4/14/21

4

14

Building Blocks of a Computer

Central
Processing

Unit Control Unit

Input Memory ALU Output

System Bus

16

The Blocks, Their Functions

• Input unit
– Takes inputs from the external world via variety of

input devices – keyboard, mouse, etc.

• Output Unit
– Sends information (after retrieving, processing) to

output devices – monitors/displays, projectors, audio
devices, etc.

17

More (try more filename on your Unix/Linux machine)

• Memory
– Place where information is stored
– Primary memory

• Electronic devices, used primarily for temporary storage
• Characterized by their speedy response

– Secondary Memory
• Devices for long-term storage
• Contained well tuned mechanical components, magnetic

storage media – floppies, hard disks
• Compact Disks use optical technology

18

Some More (Commands are in /bin, /usr/bin. Use ls)

• System Bus
– Essentially a set of wires, used by the other units to

communicate with each other

– transfers data at a very high rate

• ALU – Arithmetic and Logic Unit
– Processes data - add, subtract, multiply, …
– Decides – after comparing with another value, for

example

4/14/21

5

19

Finally (check man cp, man mv, man ls, man –k search string)

• Control Unit
– Controls the interaction among other units
– Knows each unit by its name, responds to requests

fairly, reacts quickly on certain critical events
– Gives up control periodically in the interest of the

system

Control Unit + ALU is called the CPU

20

The CPU (editors vi, emacs used to create text)

• Can fetch an instruction from memory
• Decode and Execute the instruction
• Store the result in memory
• A program – a set of instructions
• An instruction has the following structure

Operation operands destination
• A simple operation

add a, b Adds the contents of register locations a and b
and stores the result in register a

21

Variables (stored in Memory)

• Data is represented as binary strings
– It is a sequence of 0’s and 1’s (bits), of a

predetermined size – “word”. A byte is made of 8 bits.

• Each memory location may be given a name.
• The name is the variable that refers to the data

stored in that location
– e.g. rollNo, classSize

• Variables have types that define the interpretation
of data
– e.g. integers (1, 14, 25649), or characters (a, f, G, H)

22

Instructions

• Instructions take data stored in variables as
arguments

• Some instructions do some operation on the data
and store it back in some variable
– e.g. The instruction “X←X+1” on integer type says

that “Take the integer stored in X, add 1 to it, and
store it back in (location) X”

• Other instructions tell the processor to do
something
– e.g. “jump” to a particular instruction next, or to exit

4/14/21

6

23

Programs

• A program is a sequence of instructions
• Normally the processor works as follows,

– Step A: pick next instruction in the sequence
– Step B: get data for the instruction to operate upon

– Step C: execute instruction on data (or “jump”)
– Step D: store results in designated location (variable)

– Step E: go to Step A

• Such programs are known as imperative
programs

24

Programming Paradigms
• Imperative programs are sequences of instructions. They

are abstractions of how the von Neumann machine
operates

• Pascal, C, Fortran
• Object Oriented Programming Systems (OOPS) model

the domain into objects and interactions between them
• Simula, CLOS, C++, Java

• Logic programs use logical inference as the basis of
computation

• Prolog
• Functional programs take a mathematical approach of

functions
• LISP, ML, Haskell

25

• Father(X, Y)
• Father(X, Z)
• Father(N, M)
• Rules:
• Sibling(A,B):- Father(J,A) and Father(J,B)

• Sibling(Y, M)? False
• Sibling(Z, Y)? True

26

Compilers

Source code in a
Higher Level Language 1

Source code in a
Higher Level Language n

Assembly language code

Assembler, linker, loader

Compiler Compiler

Human friendly languages à source code

Machine language code

Machine understandable language

4/14/21

7

27

Assembly language
• An x86/IA-32 processor can execute the

following binary instruction as expressed in
machine language:
Binary: 10110000 01100001

mov al, 061h
– Move the hexadecimal value 61 (97 decimal) into the

processor register named ”al".
– Assembly language representation is easier to

remember (mnemonic)

From Wikipedia

28

Example Assembly Code (Z80 microprocessor)

LD A,5
ADD A,3
LD B, 4
ADD A, B
LD A, D

A=5
A=A+3 (A = 8)
B=4
A=A+B (A=12)
D=A

28

29

Higher Level Languages
• Higher level statement = many assembly

instructions
• For example “X = Y + Z” could require the

following sequence
– Fetch the contents of Y into R1
– Fetch the contents of Z into R2
– Add contents of R1 and R2 and store it in R1
– Move contents of R1 into location named X

30

DATA REPRESENTATION

4/14/21

8

32

Number Systems

• Decimal: 0 .. 9
• Binary: 0 1
• Octal: 0 .. 7
• Hexadecimal: 0 .. 9 A B C D E F
• FEED -

33

Two-bit binary numbers

• 00
• 01
• 10 = 2 (base 10)
• 11 = 3 (base 10)
• N bits: 2^n numbers

34

3-bit binary numbers
• 000
• 001
• 010
• 011
• 100
• 101
• 110
• 111

35

4-bit binary numbers (Base 16:
Hexadecimal)
• 0000: 0
• 0001
• 0010
• 0011
• 0100
• 0101
• 0110
• 0111: 7

• 1000: 8
• 1001: 9
• 1010: A
• 1011: B
• 1100: C
• 1101: D
• 1110: E
• 1111: F

4/14/21

9

36

• 789 base 10 = 7*10^2 + 8 * 10^1 + 9*10^0
• 11011 base 2 = 1*2^4 + 1 *2^3 + 0*2^2 + 1*2^1 + 1*2^0 =

• 16 + 8 + 0 + 2 + 1 = 27

• 11011 base 10 = 11011
• 11011 base 8 = 4617
• There are 10 kind of people in the world: those who understand

binary and those who dont

37

Convert (39)10 to binary form

Base = 2

2 19 + Remainder 1
2 9 + Remainder 1
2 4 + Remainder 1
2 2 + Remainder 0

392

2 1 + Remainder 0
0 + Remainder 1

Put the remainders in reverse order: (100111)2

(100111)2 = (1 x 25) +(0 x 24)+(0 x 23)+(1 x 22) +(1 x 21)+(1 x 20)

= (39)10

39 = 2*19 + 1
= 2*(2*9 +1) + 1
= 22*9 + 21*1 + 1
= 22*(2*4+1) + 21*1 + 1
= 23*4+22*1+ 21*1 + 1
= 23*(2*2+0)+22*1+ 21*1 + 1
= 24*2+23*0+ 22*1+ 21*1 + 1
= 24*(2*1+0) + …
= 25*1+24*0+23*0+22*1+ 21*1+ 1

Decimal to Binary Conversion

38

Steps to convert decimal to binary
98 base 10 = 1100010 base 2

Given X
i = 0

Loop until (X != 0)

D[i] = X mod 2
X = X / 2 ;; Quotient

i = i + 1

end

39

base - 10 : (99999…9) = 10m - 1

base - 2 : (11111…1) = 2m - 1

m = 3 (999) = 103 - 1

(111) = 23 - 1

Limitation: Memory cells consist of 8 bits (1 byte)
multiples, each position containing 1 binary digit

Largest number that can be stored in m-digits

4/14/21

10

40

Common cell lengths for integers : k = 16 or 32 or 64 bits

First bit is used for a sign

0 – positive number

1 – negative number

The remaining bits are used to store the binary
magnitude of the number.

Limit of 16 bit cell : (32,767)10 = (215 – 1)10

Limit of 32 bit cell : (2,147, 483,647)10 = (231 – 1)10

Sign - Magnitude Notation

41

Signed numbers
• M = 3

• MSB is 0: positive number

• MSB is 1: negative number
• 000 : +0

• 001: 1

• 010: 2
• 011: 3

• 100 : -0
• 101: -1

• 110 :-2
• 111: -3

42

In the one’s complement method, the negative of integer n
is represented as the bit complement of binary n

E.g. : One’s Complement of (3)10 in a 3 - bit cell

complement of 011 : 100

-3 is represented as = (100)2

000 : 0
001 : +1
010 : +2
011 : +3
100 : -3
101 : -2
110 : -1
111 : -0

One’s Complement Notation

Arithmetic requires care:

2 + (-3) = 010 + 100 = 110 – ok

But, 3 + (-2) = 011 + 101 = 000 and carry of 1

need to add back the carry to get 001!

NOT WIDELY USED

Zero has two
representations!

43

8 bit number

What is -23 in one’s complement form?
23: 00010111
-23: 11101000

Add these two:
0: 11111111

4/14/21

11

45

In the two’s complement method, the negative of integer n
in a k - bit cell is represented as 2k – n

Two’s Complement of n = (2k – n)

E.g. : Two’s Complement of (3)10 in a 3 - bit cell

-3 is represented as (23 - 3)10 = (5)10 = (101)2

000 : 0
001 : +1
010 : +2
011 : +3
100 : -4 (8 – 4)
101 : -3 (8 – 3)
110 : -2 (8 – 2)
111 : -1 (8 – 1)

Arithmetic requires no special care:

2 + (-3) = 010 + 101 = 111 – ok

3 + (-2) = 011 + 110 = 001 and carry of 1

we can ignore the carry!

WIDELY USED METHOD for –ve numbers

Two’s Complement Notation

46

000 : 0
001 : +1
010 : +2
011 : +3
100 : -4
101 : -3
110 : -2
111 : -1

The Two’s Complement notation admits one more
negative number than the sign - magnitude notation.

Two’s Complement Notation

To get back n, read off the sign from the MSB

If –ve, to get magnitude, complement the cell and
add 1 to it!

E.g.: 101 à 010 à 011 = (-3)10

47

Two’s complement

m = 3

011
One’s complement: 100
Add 1: 100+ 1 = 101 (-3)
-1: 001 -> 110 + 1 = 111
-2: 010 -> 101 + 1 =

000 0
001 1
010 2
011 3
100 -4
101 -3
110 -2
111 -1

48

Binary addition

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

4/14/21

12

49

Integer Part + Fractional Part

Decimal System - base 10
235 . 7846

Binary System - base 2

10011 . 11101 = (19.90625) 10

410

6

310

4

210

8

10

7
+++=Fractional Part (0.7846)10

Fractional Part (0.11101)2 90625.0
52

1

42

0

32

1

22

1

2

1
=++++=

Numbers with Fractions

50

(10.11)2

Fractional Part (11)2 = 1*2^(-1) + 1 * 2^(-2) = ½ + ¼ =
0.75

Decimal Fraction = (2.75)10

Binary Fraction to Decimal Fraction

Integer Part (10)2 = 1*21 + 0*20 = 2

51

Convert (0.90625)10 to binary fraction
0.90625

* 2
0.8125 + integer part 1

* 2

0 + integer part 1

Thus, (0.90625)10 = (0.11101)2

0.90625 = ½(1+0.8125)
= ½(1+ ½(1+0.625))
= ½(1+ ½(1+ ½(1+0.25)))
= ½(1+½(1+ ½(1+½(0+0.5))))
= ½(1+½(1+½(1+½(0+½(1+0.0)))))
= ½+1/22+1/23+0/24 +1/25

= (0.11101)2

Decimal Fraction to Binary Fraction (1)

0.625 + integer part 1
* 2

0.25 + integer part 1
* 2

0.5 + integer part 0
* 2

52

Convert (0.9)10 to binary fraction
0.9
x 2

0.8 + integer part 0 Repetition

(0.9)10 = 0.11100110011001100 . . .

For some fractions, we do
not get 0.0 at any stage!

These fractions require an
infinite number of bits!
Cannot be represented

exactly!

Decimal Fraction to Binary Fraction (2)

0.8 + integer part 1
x 2

0.6 + integer part 1
x 2

0.2 + integer part 1
x 2

0.4 + integer part 0
x 2

4/14/21

13

53

Floating point numbers: radix point can float
1.20 x10-1 * 1.20 x10-1 = 1.44 * 10-2

Floating point system allows a much wider range of
values to be represented

Fixed Versus Floating Point Numbers

Fixed Point: position of the radix point is fixed
and is same for all numbers

E.g.: With 3 digits after decimal point:
0.120 * 0.120 = 0.014

A digit is lost!!

54

0.0000747 = 7.47 *10-5

31.4159265 = 3.14159265 *101

9,700,000,000 = 9.7 *109

Binary

(10.01)2 = (1.001)2 * 21

(0.110)2 = (1.10)2 * 2-1

Scientific Notation (Decimal)

55

x = +/- (q * 2n)

q – mantissa
n – exponent

(-39.9)10 = (-100111.1 1100)2

= (-1.001111 1100)2 * 25

Using Floating Point Notation
For any number x

Decimal Value of stored number (-39.9)10

= (-1. 001111 1100 1100 1100 11001) * 25

23 bit

32 bits :

First bit for sign

Next 8 bits for exponent

23 bits for mantissa

= -39. 90000152587890625

Stored value, as per IEEE 754 format: 1 10000100 00111111001100110011010
(Last bit rounded up by adding 1) 1100 0010 0001 1111 1001 1001 1001 1010 56

Binary Arithmetic

Bit 0 Bit 1 Carry Sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Carry In Bit 0 Bit 1 Carry Out Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1
0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Half
Adder

Full
Adder

4/14/21

14

57

Number Representations for a 4-bit number

Binary
Number

Sign-
Mag.

One’s
Compl.

Two’s
Compl.

0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7

Binary
Number

Sign-
Mag.

One’s
Compl.

Two’s
Compl.

1000 0 -7 -8
1001 -1 -6 -7
1010 -2 -5 -6
1011 -3 -4 -5
1100 -4 -3 -4
1101 -5 -2 -3
1110 -6 -1 -2
1111 -7 0 -1

58

How to Convert a k-bit Sign-Magnitude
number to decimal
• If MSB = 0, let x denote decimal value of

remaining (k-1) bits
• Decimal Number = +x

• If MSB = 1, let x denote decimal value of
remaining (k-1) bits
• Decimal Number = -x

• 0110 (Base 2) = +6 (Base 10)
• 1010 (Base 2) = -2 (Base 10)

59

How to Convert a k-bit One’s Complement
number to decimal
• Let y denote unsigned decimal value of all k bits
• MSB = 0
• Decimal Number = +y

• MSB = 1
• Decimal Number = -(2k-y-1)
• ALT: Flip all bits; Let z be this bit-string’s value;

Decimal Number = -z

• 0101 (Base 2) = +5 (Base 10)
• 1101 (Base 2) = -(16-13-1) = -2 (Base 10)

60

How to Convert a k-bit Two’s Complement
number to decimal
• Let y denote unsigned decimal value of all k bits
• MSB = 0
• Decimal Number = +y

• MSB = 1
• Decimal Number = -(2k-y)

• 0101 (Base 2) = +5 (Base 10)
• 1101 (Base 2) = -(16-13) = -3 (Base 10)

4/14/21

15

61

Limits of Numbers
Numb
er of
Bits

Unsigned Sign-Magnitude One’s Complement Two’s
Complement

4 0 to 15 -7 to + 7 -7 to +7 -8 to +7

8 0 to 255 -127 to +127 -127 to +127 -128 to +127

16 0 to 65535 -32767 to +32767 -32767 to +32767 -32768 to +32767

32 0 to 232 - 1 -(231 – 1) to (231 – 1) -(231 – 1) to (231 – 1) -231 to (231 – 1)

N

• If you add two positive numbers and result is negative, overflow has occurred
• If you add two neg. numbers and result is positive, underflow has occurred

62

Data Representation
• Integers – Fixed Point Numbers

Decimal System - Base 10 uses 0,1,2,…,9

(396)10 = (3 x 102) + (9 x 101) + (6 x100) = (396)10

Binary System - Base 2 uses 0,1

(11001)2 = (1 x 24) + (1 x 23) + (0 x 22)+(0 x 21) +(1 x
20) = (25)10

64

Courses related to topics mentioned in Week 1

• CS2300 – Foundations of Computer Systems
• CS2600 – Computer Organization
• CS3100 – Paradigms of Programming
• CS3300 – Compiler Design
• CS3500 – Operating Systems

64

