
5/28/21

1

Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 1

CS1100
Introduction to Programming

Functions

SD, PSK, NSN, DK, TAG – CS&E, IIT M 2

Functions = Outsourcing
• Break large computing tasks into small ones
• Helps you to build on what others have done

– You and others write functions
– When you want to build a program, find out how to

use the function and invoke it accordingly

• Using standard functions provided by the library
– Implementation details are hidden from caller
– Example: we don’t have to know about how pow(m,
n) is implemented

– What does it compute and return?
– What values should I give to the function?

SD, PSK, NSN, DK, TAG – CS&E, IIT M 3

Modular Programming
• Wikipedia: “Modular programming is a software design technique

that emphasizes separating the functionality of a program into
independent, interchangeable modules, such that each contains
everything necessary to execute only one aspect of the desired
functionality.”

• Subprograms/Modules
• Overall task is divided into modules

• Each module - a collection of subprograms
– functions in C, C++, procedures and functions in Pascal
– a subprogram may be invoked at several points
– hide the implementation details from the user

SD, PSK, NSN, DK, TAG – CS&E, IIT M 4

Example of Function Sets
• String manipulation
• Mathematical
• Graphical User Interface
• Finite Element Method

– Used in structural analysis for stress calculations etc.

• Most function libraries cost a lot
– Business opportunity – identify functions that are

useful to your area of study, create libraries

• Functions for use in different software
– Say, functions for web services

5/28/21

2

SD, PSK, NSN, DK, TAG – CS&E, IIT M 5

Function – General Form

return-type function-name (argument declarations)
{

declaration and statements
return expression;

}

return-type can be any valid C type or void

SD, PSK, NSN, DK, TAG – CS&E, IIT M 6

Function Definition in C
• return-type function-name (argument declarations)

{variable/constant declarations and statements}
• Arguments or parameters:

– giving input to the function
– type and name of arguments are declared

• names are formal - local to the function

• Return value: for returning the output value
– return (expression); -- optional

• To invoke a function
function-name(exp1,exp2,…,expn)

Matching the
number and type

of arguments

No function
declarations here!

SD, PSK, NSN, DK, TAG – CS&E, IIT M 7

Power Function
#include <stdio.h>
int enpower (int, int);
int main(int argc, char **argv) {
for (int i = 0; i < 20; i ++)

printf(“%d %d %d\n”, i, enpower(3,i), enpower(-4,i));
}
int enpower (int base, int n) {

int i, p = 1;
for (i = 1; i <= n ; i ++)

p = p * base;
return p;

}

Computes the nth power of
base (1st parameter)

function prototype

Invocation with
argumentsA block

SD, PSK, NSN, DK, TAG – CS&E, IIT M 8

Calling Power Function with i=3
printf(“%d %d %d\n”, i, power(3,i), power(-4,i));

int power (int base, int n){
int i, p = 1;
for (i = 1; i <= n ; i ++)
p = p * base;
return p;
}

int power (int base, int n){
int i, p = 1;
for (i = 1; i <= n ; i ++)
p = p * base;
return p;
}

27
-64

5/28/21

3

SD, PSK, NSN, DK, TAG – CS&E, IIT M 9

Basics
• Function is a part of your program

– It cannot be a part of any other function
– main() is a function: it is the main (duh!) function

• Execution starts there or the control flow starts there

– From there it can flow from one function to another,
return after a computation with some values, probably,
and then flow on

– main() calls fnA; fnA calls fnB; fnB calls fnC
– fnC finishes, control returns to fnB
– fnB finishes à fnA
– fnA finishes à main
– main finishes à program terminates

SD, PSK, NSN, DK, TAG – CS&E, IIT M 10

main()

fnA()

fnC() : completes and returns control to fnB()

fnB()

Function Call Sequence

fnB(): completes and returns control to fnA()

fnA(): completes and returns control to main()

main(): completes and returns control to shell(i.e, OS)

SD, PSK, NSN, DK, TAG – CS&E, IIT M 11

Transfer of control in a program
• Transfer of control is affected by calling a

function
– With a function call, we pass some parameters
– These parameters are used within the function
– A value is computed

– The value is returned to the function that initiated the
call

– The calling function can ignore the value returned or
use it in some other computation

– A function could call itself, these are called recursive
function calls

SD, PSK, NSN, DK, TAG – CS&E, IIT M 12

Add Functions to Your Program
• A program is a set of variables, and assignments

to variables
• Now we add functions to it

– Set of variables

– Some functions including main()
– Communicating values to each other
– Computing and returning values for each other

• Instead of one long program, we now write a
structured program composed of functions

5/28/21

4

SD, PSK, NSN, DK, TAG – CS&E, IIT M 13

Features
• C program -- a collection of functions

– function main () - mandatory - program starts here.

• C is not a block structured language
– a function cannot be defined inside another function

– only variables can be defined in functions / blocks

• Variables can be defined outside of all functions
– global variables - accessible to all functions
– a means of sharing data between functions - caution

• Recursion is possible
– a function can call itself - directly or indirectly

SD, PSK, NSN, DK, TAG – CS&E, IIT M 14

Local Variables

• Variables can be declared inside a function
• Called “local” variables

• Scope of local variables is LIMITED to the
function where they are declared

int fnA (int, int);

int main()
{

int a, b, g;

g = fnA(a, b);
}

// defined after main in the file.
int fnA(int x, int y)
{

int c, d; // c and d are not visible outside fnA
// a and b of main() are not visible in this function.

c = x*y;
d = x+y;

return c/d;
}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 15

Function Prototype
• Used by the compiler to check the usage

– prevents execution-time errors

• Defines
– the number of parameters, type of each parameter,

– type of the return value of a function

• Ex: function prototype of power function:
int power (int, int);

– no need for naming the parameters

• Function prototypes are given in the beginning
before a function is called (else, Compiler cribs)

SD, PSK, NSN, DK, TAG – CS&E, IIT M 16

Extra Q

• Write a function prototype that takes as input
arguments an int, double and char and returns a
value of type long int

5/28/21

5

SD, PSK, NSN, DK, TAG – CS&E, IIT M 17

Extra Q

What is the output of the
following program (P1)?

#include<stdio.h>
void changeval (int a)
{

a = 5; return;

}
int main (){

int k = 3;
changeval(k);

printf(“Value of k is %d\n”, k);
}

What is the output of the
following program (P2)?

#include<stdio.h>
int changeval (int a)
{

a = 5; return a;

}
int main (){

int p = 3;
p = changeval(p);

printf(“Value of p is %d\n”, p);
}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 18

Call by Value
• In C, function arguments are passed “by value”

– values of the arguments given to the called function
in temporary variables rather than the originals

– the modifications to the parameter variables do not
affect the variables in the calling function

• “Call by reference” – C does not support.
– variables are passed by reference

• variables are subject to modification by the function

– C programmer sometimes pretend to realize “Call by
reference” by passing the “address of” variables

SD, PSK, NSN, DK, TAG – CS&E, IIT M 19

Call by Value – An Example
main() {
int p = 1, q = 2, r = 3, s;
int test(int, int, int);
…;
s = test (p, q, r); … /* s is assigned 9 */
} /* p,q,r don’t change, only their copies do */

int test(int a, int b, int c){
a ++; b ++; c ++;
return (a + b + c);

}

Function prototype

Function call

Function definition

SD, PSK, NSN, DK, TAG – CS&E, IIT M 20

This is also Call by Value.
#include <stdio.h>
void quoRem(int, int, int*, int*); /*addresses or pointers*/
main(){
int x, y, quo, rem;
scanf(“%d%d”, &x, &y);
quoRem(x, y, &quo, &rem);
printf(“%d %d”, quo , rem);

}

void quoRem(int num, int den, int* quoAdr, int* remAdr){
*quoAdr = num / den; *remAdr = num % den;

}

Does not return
anything

Passing
addresses

5/28/21

6

SD, PSK, NSN, DK, TAG – CS&E, IIT M 21

More on Functions
• To write a program

– You could create one file with all the functions

– You could/are encouraged to identify different modules
and write functions for each module in a different file

– Each module will have a separate associated header file
with the variable declaration global to that module

– You could compile each module separately and a .o file
will be created

– You can then cc the different .o files and get an a.out
file

– This helps you to debug each module separately
SD, PSK, NSN, DK, TAG – CS&E, IIT M 22

RECURSION

SD, PSK, NSN, DK, TAG – CS&E, IIT M 23

Factorial (n)
n! = 1 * 2 * 3 * * (n-2) * (n-1) * n
Iterative version

int fact(int n){
int i;
int result;
result = 1;
for (i = 1; i <= n; i++)

result = result * i;
return result;

}

In practice int may
not be enough!

SD, PSK, NSN, DK, TAG – CS&E, IIT M 24

Factorial (n) – Recursive Program

n! = n * (n-1)!

int fact(int n)
{
if (n == 0) return(1);
return (n*fact(n - 1));

}

• Shorter, simpler to understand
• Uses fewer variables
• Machine has to do more work running this one!

5/28/21

7

SD, PSK, NSN, DK, TAG – CS&E, IIT M 25

Pending Computations
• In this recursive version the calling

version still has pending work
after it gets the return value.

(fact 4)
4 * (fact 3)

3 * (fact 2)
2 * (fact 1)
1

2*1 =2
3*2 = 6

4*6 = 24

int fact(int n)
{

if (n == 1) return
1;

return n * fact(n - 1);
}

It needs to save
some values for

future use

SD, PSK, NSN, DK, TAG – CS&E, IIT M 26

Recursive Function Example

int power (int num, int exp) {
int p;
if (exp = = 1) return num;
p = power(num, exp/2);
if (exp % 2 = = 0) return p*p;
else return p*p*num;}

The base case exp = 1

Guarantees termination

SD, PSK, NSN, DK, TAG – CS&E, IIT M 27

Recursive Function Example
power(3, 13)

return power(3, 6)*power(3,6)*3

return power(3, 1)*power(3,1)*3

return 3

return 3*3*3

return 27*27

return 729*729*3

return 1594323

return power(3, 3)*power(3,3)

SD, PSK, NSN, DK, TAG – CS&E, IIT M 28

Tail Recursion (Not covered in class)

int fact(n)
{ return fact_aux(n, 1); }

int fact_aux(int n, int result)
{
if (n == 1) return result;
return fact_aux(n - 1, n * result)
}

The recursive call is
in the return

statement. The
function simply

returns what it gets
from the call it

makes. The calling
version does not
have to save any

values!

Auxiliary variable

