
Improving JavaScript Performance
by Deconstructing the Type System

∗

Wonsun Ahn, Jiho Choi, Thomas Shull, María J. Garzarán, and Josep Torrellas

University of Illinois at Urbana-Champaign

{dahn2, jchoi42, shull1, garzaran, torrella}@illinois.edu

ABSTRACT

Increased focus on JavaScript performance has resulted in
vast performance improvements for many benchmarks. How-
ever, for actual code used in websites, the attained improve-
ments often lag far behind those for popular benchmarks.

This paper shows that the main reason behind this short-
fall is how the compiler understands types. JavaScript has
no concept of types, but the compiler assigns types to ob-
jects anyway for ease of code generation. We examine the
way that the Chrome V8 compiler defines types, and identify
two design decisions that are the main reasons for the lack
of improvement: (1) the inherited prototype object is part
of the current object’s type definition, and (2) method bind-
ings are also part of the type definition. These requirements
make types very unpredictable, which hinders type special-
ization by the compiler. Hence, we modify V8 to remove
these requirements, and use it to compile the JavaScript
code assembled by JSBench from real websites. On average,
we reduce the execution time of JSBench by 36%, and the
dynamic instruction count by 49%.

Categories and Subject Descriptors

D.3.2 [Programming Languages]: Language Classifica-
tions—Very high-level languages; D.3.3 [Programming Lan-

guages]: Language Constructs and Features—Classes and
objects, Inheritance, Polymorphism; D.3.4 [Programming

Languages]: Processors—Code generation, Compilers, Op-
timization

General Terms

Design, Languages, Performance

Keywords

JavaScript, Scripting Language, Dynamic Typing, Type Spe-
cialization, Hidden Class, Inline Caching, Prototype

∗This work is supported in part by NSF under grants CCF-
1012759, CNS-1116237, and CNS-1319657, and Intel under
the Illinois-Intel Parallelism Center (I2PC).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
PLDI’14, June 09 - 11 2014, Edinburgh, United Kingdom.
Copyright 2014 ACM 978-1-4503-2784-8/14/06 ...$15.00.
http://dx.doi.org/10.1145/2594291.2594332

1. INTRODUCTION
The vast majority of websites today use JavaScript [2]

to implement their client-side logic. This trend seems set
to accelerate with the introduction of new web standards
such as HTML5 that allow JavaScript to handle more of
the dynamism in the web. At the same time, the advent of
mobile computing and, more recently, wearable computing
means that processors necessarily have to get simpler. This
has put a spotlight on JavaScript performance, despite hard-
to-optimize features such as dynamic typing.

As a result of this pressure, advanced JavaScript compil-
ers such as Chrome V8 [8] have recently shown great im-
provement. However, most of the effort has been focused on
speeding-up a set of popular benchmarks — e.g., Kraken [4],
Octane [5], and SunSpider [7]. Only recently has it come to
light that the behavior of JavaScript code in real websites is
more dynamic than in these benchmarks [20, 23, 22]. This
dynamism presents new challenges to the compiler.

In this paper, we focus on understanding and eliminat-
ing the main performance bottlenecks of JavaScript code
in real websites. We start by showing that V8 is unable
to substantially improve the performance of JavaScript in
JSBench [21] — a suite that assembles code from some real
websites. Next, we show that a key reason behind this short-
fall is the higher degree of type dynamism in website code,
which makes it hard for the compiler to predict object types
and generate specialized code for them.

We show that this type dynamism stems from the way the
compiler understands types. Types do not exist in JavaScript
as a language concept, but the compiler imposes types any-
way to describe objects for the purposes of type special-
ization. V8 defines three aspects of objects to be part of
the type description: (1) the object’s structure, (2) the ob-
ject’s inherited prototype, and (3) the object’s method bind-
ings. This seems natural, since this is how statically-typed
object-oriented languages also define types. The expectation
is that, although JavaScript allows for more dynamism, it
will follow the behavior of static languages in actual execu-
tion. This assumption, while true for popular benchmarks,
often turns out to be inaccurate for real website code. Based
on this observation, we propose and evaluate three enhance-
ments to the V8 compiler. These enhancements decouple
prototypes and method bindings from the type definition.
As a result, they eliminate most type unpredictability and
speed-up JavaScript execution substantially.

The contributions of this paper are:
• It characterizes, for the first time, the internal behavior of
the V8 compiler when executing website code (as assembled
by JSBench) compared to popular benchmarks. V8 is on
the cutting edge of JavaScript compilation.

• It identifies type unpredictability as the main source of
performance shortfall for website code. Further, it singles
out frequent changes to prototypes and method bindings as
the cause of the unpredictability, as well as scenarios that
trigger them.
• It proposes three enhancements to the compiler that ef-
fectively decouple prototypes and method bindings from the
type definition, and eliminate most type unpredictability.
• It implements these enhancements in V8 and evaluates
them with JSBench. The results show that, on average, our
enhancements reduce the execution time by 36%, and the
dynamic instruction count by 49%. Moreover, the reduction
in type dynamism leads to a reduction in bookkeeping in-
formation in the compiler, leading to a savings of 20% in
heap memory allocation. Finally, the performance of popu-
lar JavaScript benchmarks is largely unchanged.

This paper is organized as follows: Section 2 gives a back-
ground; Section 3 motivates this work; Section 4 introduces
the problem we want to solve; Section 5 presents our pro-
posed modifications to the compiler; Section 6 discusses var-
ious aspects of the enhancements; Section 7 evaluates the
enhancements; and Section 8 considers related work.

2. BACKGROUND

2.1 The JavaScript Language
JavaScript [2] is a dynamically-typed language, where vari-

able types are not declared and everything, including func-
tions and primitives, may be treated as an object. An object
is a collection of properties, where a property has a name
and a value. The value of a property can be a function,
which is then referred to as a method of the object.

JavaScript uses prototyping to emulate the class inheri-
tance of statically-typed languages such as C++ or Java.
Every object in JavaScript inherits from a “parent” object,
which is the prototype object of the constructor function
used to create that object. Inheritance is supported by hav-
ing the special property __proto__ in the object pointing
to the prototype object at object construction time. The
prototype object is inherited by all the objects that are cre-
ated using the corresponding constructor. Properties in the
prototype can either be accessed via inheritance through the
“child” object, or directly through the prototype property
in the constructor function object.

Figure 1(a) shows a JavaScript example where a construc-
tor function Point is called twice to create objects p1 and
p2, with properties x and y. In line 8, the code shows the
use of the prototype property of constructor Point to add
the property size with value 100 to the prototype object
that has been inherited by p1 and p2. Notice that when try-
ing to print the size property of p1 in line 7, it appears as
undefined, as this property has not been defined yet. How-
ever, after defining it in the prototype object, both p1 and
p2 have access to that property in lines 9 and 10.

Generating efficient code for dynamically-typed languages
is difficult. For instance, suppose that we are executing
the code in Figure 1(b) that accesses property x. Since
JavaScript programmers do not declare types, it is unknown
where property x is stored in memory. Indeed, property
x can be found at different memory offsets for the differ-
ent objects that getX can receive as arguments. Thus, in
JavaScript, each property access requires a lookup in a dic-
tionary to resolve the property’s location in memory. In lan-

function Point (x, y){ 1
2 this.x = x;

this.y = y;3
4 }

5 new Point (11, 22);

3
2
1

return p.x;
}

4 var sumX += getX(p1);

(b)
var p1 =

new Point (33, 44);
7
8 Point.prototype.size = 100;
9 print(p1.size); //100

10 print(p2.size); //100

(a)

6
print(p1.size); //undefined
var p2 =

function getX(p){

Figure 1: Example JavaScript code to create an object (a) and
to access an object property (b).

guages such as C++ or Java, properties are located at fixed
offsets that can be statically determined by the compiler
based on the object’s class, and a property access requires a
single load or store.

Modern Just-In-Time (JIT) compilers address this prob-
lem by using specialization [10, 11]. Specialization is based
on the empirical evidence that, at run time, programs are
not as dynamic as they could be: the type of an object
tends not to change, and the type of a variable at a given
access site tends to be always consistent. Thus, JIT com-
pilers collect profile information at runtime that they use
to generate specialized code, usually guarded by a runtime
condition that checks that the assumption made to generate
the specialized code is correct. If the check fails, the code
needs to bail out to the runtime or jump to more inefficient
code.

2.2 The Chrome V8 Compiler
V8 [8] is the JavaScript JIT compiler used in the Google

Chrome web browser. In the following, we describe hidden
classes and inline caching. More details can be found in
website documents [12] and in the V8 source code [8]. These
two concepts are not specific to V8, however, and are used
in all popular JavaScript compilers [1, 3, 6].

2.2.1 Hidden Classes

V8 uses hidden classes to introduce the notion of types.
The basic idea is similar to the maps in Self [11]. Objects
that are created in the same way are grouped in the same
hidden class. V8 uses the information collected in the hidden
class to generate efficient code, as hidden classes record the
offset where a given property for that object type is located.
Note that the concept of types itself is an idea imposed by
the compiler for the purposes of code generation, and is not
present in the semantics of a dynamically-typed language
like JavaScript. For this reason, types in dynamically-typed
languages are called hidden classes, to stress that the types
are hidden from the programmer. We use the terms type
and hidden class interchangeably.

Figure 2 shows how V8 creates hidden classes for the code
in Figure 1(a). The first time that constructor Point is
instantiated to create object p1 in line 5, an empty Point
object is created (not shown in Figure 2). Such object only
contains a pointer to its hidden class, which initially is also
empty (2© in Figure 2). The hidden class only contains
the __proto__ pointer to the prototype of the object (3©).
Initially, the prototype object is also empty and contains a
pointer to its own hidden class (4©). When property x is
added to p1 in line 2, object p1 points to a new hidden class
that records the new property x and its offset (5©). The
value for x, 11 in this case, is added to the object. Similarly,
when property y is added (line 3), the object points to a

new hidden class (6©) that contains offsets for x and y. The
resulting object p1 is now shown as 1© in Figure 2. When
object p2 in line 6 is instantiated using the same constructor,
another object is created, which follows the same hidden
class transitions as p1, and ends up as object 7© in Figure 2.

������� �	

���
������ �����������������

�������� ������

���������

�������� ������

���������

�

������

���������

�

��������

�

�

��

�

��

�������� ������

�

�

�

�

���������

��	������������

��������

��

��

����������

�������� ���

�

��	��

�

������

���������

��������

�	��

�	

���
����

��

�������	
���

�������	
���

� �

�

�

!

"

!!��������

�������� ��

������

�����������	

��

Figure 2: Example of hidden classes.

The prototype object (3©) is a regular JavaScript object.
Thus, when it is created, V8 also creates its hidden class
(4©). As usual, when a new property is added to the pro-
totype object (Point.prototype.size in line 8), the pro-
totype object transitions to a new hidden class (8©). The
prototype hidden class has a pointer to its own prototype
object, which is the built-in object Object.prototype (not
shown in the figure). Figure 2 shows the state of the heap
after all the instructions in Figure 1(a) have executed.

Hidden classes are immutable data structures. Thus, if an
object adds a new property or changes its prototype object,
its Hidden Class pointer is updated to point to a different
hidden class. Thanks to this immutability, checking if two
objects have the same type is as simple as checking if the
Hidden Class in both objects points to the same address.

2.2.2 Inline Caching

A common assumption is that property accesses at a given
access site are usually performed on objects with the same
type. Hence, V8 uses a technique called inline caching [13]
to optimize accesses to object properties at an access site.

There are three main types of inline caches: load inline
cache, store inline cache, and call inline cache. A load inline
cache is used on a load of an object property. Figure 3 shows
an example of a load inline cache for the access to property
p.x of Figure 1(b). The load inline cache checks if p is an
object. If it is, then it checks if the hidden class of object p
is the same as the cached hidden class, which is the hidden
class seen earlier at this site. If so, there is an inline cache
hit, and the property can be accessed with a simple load
using the cached offset. However, if the code encounters a
type it has not seen before, it calls the runtime, which will
add another entry in the code (e.g., with a case statement) to
handle the property access for the new type. This results in
inefficient code, as a property access is now forced to perform
a lookup for the correct entry in the inline cache. An access
site that has only seen a single type is called monomorphic;
if it has seen multiple types, it is polymorphic.

A store inline cache is used on an update of an object
property, as in lines 2 and 3 of Figure 1(a). In case of an
inline cache hit, the property is updated with a simple store.
Otherwise, there is an inline cache miss and the runtime is
invoked. If a new property is added to the object a new
hidden class must also be created. Finally, a call inline cache
is used when an object method is called. Call inline caches

1 func t i on getX (p){
2 i f (p i s an ob j e c t &&
3 p .h i ddenc l a s s==cached h iddenc l a s s)
4 return p [c a c h ed x o f f s e t] ;
5 else {
6 // jump to V8 runtime
7 }
8 }

Figure 3: Inline cache example for the code in Figure 1(b).

are similar to load inline caches in that they need to first
load the method value, which is a function object, before
calling it.

Whether an inline cache access hits or misses has perfor-
mance implications. Our experimental results show that a
monomorphic inline cache hit requires about 10 instructions
(or only 3 instructions if optimized by the V8 Crankshaft
optimizing compiler), while a polymorphic inline cache hit
requires approximately 35 instructions if there are 10 types,
and approximately 60 instructions if there are 20 types. An
inline cache miss requires 1,000–4,000 instructions.

3. MOTIVATION OF THE PAPER
Figure 4 compares the number of instructions executed by

several JavaScript benchmarks with different V8 optimiza-
tion levels. We show data for the JSBench [21], Kraken [4],
Octane [5], and SunSpider [7] suites. JSBench is a suite that
assembles JavaScript code from some real websites, while
Kraken, Octane, and SunSpider are popular benchmarks
that were developed by the web browser community to com-
pare the performance of JavaScript compilers. From left to
right, we show bars for the nine individual websites in JS-
Bench, and then the arithmetic mean for JSBench, Kraken,
Octane, and SunSpider. Note that the Y axis is in loga-
rithmic scale. For each benchmark (or average), we show
three bars, corresponding to three environments. Baseline
is when all the V8 optimizations have been applied. No
Crankshaft is Baseline with the V8 Crankshaft compiler dis-
abled. Crankshaft is the V8 optimizing compiler, which per-
forms optimizations such as inlining, global value number-
ing, and loop invariant code motion, among others. Finally,
No Crankshaft, No IC is No Crankshaft with inline caching
disabled. For a given benchmark, the bars are normalized to
Baseline. For all benchmarks, sufficient warm-ups were done
to enable all compiler optimizations before measurement.

am
azon-chrom

e

am
azon-opera

facebook-chrom
e

google-chrom
e

google-firefox

google-opera

tw
itter-w

ebkit

yahoo-firefox

yahoo-opera

jsbench-am
ean

kraken-am
ean

octane-am
ean

sunspider-am
ean

0.1

1.0

10.0

100.0

N
o

rm
a

liz
e

d
 I

n
s
tr

u
c
ti
o

n
s

Baseline
No Crankshaft
No Crankshaft, No IC

Figure 4: Comparing the number of instructions executed with
different V8 optimization levels.

Looking at the mean bars, we see that both the opti-
mizing compiler and inline caching substantially benefit the
Kraken, Octane, and SunSpider suites. However they have a
small or negligible effect on the JSBench suite. Specifically,

disabling the optimizing compiler increases the average in-
struction count by 6.4x, 2.7x, and 3.1x in Kraken, Octane,
and SunSpider, respectively, while it decreases the count by
5% in JSBench. Moreover, disabling the optimizing compiler
and inline caching increases the average instruction count by
84.6x, 43.6x, and 31.9x in Kraken, Octane, and SunSpider,
respectively, and by only 1.4x in JSBench. All the bench-
marks in a given suite have a relatively similar behavior; we
do not show individual benchmarks for three suites due to
space limitations. In the rest of the paper, we explain why
real websites as assembled in JSBench do not benefit from
the V8 optimizations, and propose how to solve the problem.

4. LOW TYPE PREDICTABILITY
Websites perform poorly compared to popular benchmarks

because of type unpredictability. We define type predictabil-
ity in terms of (1) the ability of the compiler to anticipate
the type of an object at the object access site, and (2) the
variability in object types observed at the access site. We
refer to the former form of predictability as type-hit-rate and
the latter as polymorphism. Type predictability is crucial to
generating high-quality code.

With a low type-hit-rate, the compiler is frequently forced
to perform an expensive dictionary lookup on an object
property access, instead of a simple indexed access. Also,
when a new property needs to be added to the object (e.g.,
x to p1 and then y to p1 in Figure 2), the result is a type miss
that involves the creation of a new hidden class — which is
even more expensive. Finally, with high polymorphism, the
compiler is forced to do a lookup for the entry of the correct
type among multiple code entries.

There is an abundance of literature to help JavaScript
programmers write high-performance code by avoiding type
unpredictability. Programmers are advised to coerce all the
objects at an access site to have the same set of proper-
ties, and to add the properties in the same order, such that
they do not end up having different hidden classes. This
is because assigning new hidden classes to objects instead
of reusing old hidden classes leads to type unpredictability.
First, it decreases the type-hit-rate for all the inline caches
visited by the objects, since the initial sightings of the new
hidden class in the inline caches result in a miss. Second, it
increases the polymorphism in the same inline caches, since
the new hidden class has to be added to the list of antici-
pated types.

However, we have discovered that, in reality, the bulk of
type unpredictability in JavaScript code in websites comes
from two unexpected sources: prototypes and method bind-
ings. As mentioned before, prototypes in JavaScript serve
a similar purpose as class inheritance in statically-typed
object-oriented languages such as C++ and Java. Object
methods serve a similar purpose as class methods in statically-
typed languages. In a statically-typed language, the parent
classes and the class method bindings of an object are set
at object creation time and never change. JavaScript com-
pilers optimize code under the assumption that, although
JavaScript is a dynamically-typed language, its behavior
closely resembles that of a statically-typed language.

For the popular JavaScript benchmarks that compiler de-
velopers compete on, the assumption that the prototypes
and method bindings of an object almost never change holds
true. However, the behavior of the code that is being used
in websites is much more dynamic. In websites, prototypes

and method bindings do change quite often. This results in
an increase in the number of hidden classes and, along with
it, type unpredictability. This is the prime reason behind
the comparatively lackluster performance of the optimizing
compiler and inline caching in websites seen in Figure 4.

In the following sections we describe specifically what pat-
terns result in this behavior.

4.1 First Culprit: Prototypes
The first culprit behind the type unpredictability seen

in website JavaScript code is integrating the prototype of
an object into its hidden class. The immutability of the
prototype in the hidden class allows the prototype to be
checked automatically when the hidden class is checked in
inline caches. However, the downside is that, to maintain
the immutability of the prototype, a new hidden class needs
to be created for every change in the prototype.

This is analogous to the need for the compiler to create a
new hidden class each time a new property is added. There
is a key difference, however. In a given piece of code, there
is a fundamental limit to how many new hidden classes can
be created due to property addition. This is because objects
can only have so many properties. After several executions,
all properties that can be added would have been added
already, and the number of hidden classes would saturate
very soon.1

However, there is no limit to the number of hidden classes
that can be created due to changes in prototypes. In fact,
new hidden classes can still be created even after multiple
warm-ups of the same code. Next, we describe two cases
where changes in prototypes can lead to rampant hidden
class creation and type unpredictability.

4.1.1 Prototype Changes due to Function Creation

JavaScript semantics dictate that every time a function
is created, a corresponding prototype for that function is
created, when the function is used as a constructor. This
is how JavaScript implements inheritance. The problem oc-
curs when there is frequent function creation. Since the
__proto__ pointer is immutable in a hidden class, growth in
the number of prototypes leads to a corresponding growth
in the number of hidden classes.

Figure 5(a) shows an example of a loop that creates a
new function object at each iteration, and assigns it to the
variable Foo. Also at each iteration, a new object Obj is con-
structed using that function. The store to this.sum at line
3 is handled using an inline cache. This type of code pat-
tern, where functions are created dynamically in the same
scope as the call site, is quite common in JavaScript code —
often simply because it is easier to program that way. Also,
it leads to better encapsulation, compared to defining the
function in the global scope and polluting the global name
space. Regardless of the reason, ideally we would like only
a single type to reach the inline cache, namely the initial
hidden class created by function Foo.

In reality, the type of Obj that reaches line 3 turns out
to be different at each iteration, due to the dynamic func-
tion creation. Figure 6(a) shows the state of the heap at
the end of each iteration. At iteration 1, immediately af-

1Properties added through true dictionary accesses, in the
form of object[key], are an exception to this rule. However,
true dictionaries are not candidates for type specialization
and do not need hidden classes.

1 for (var i = 0 ; i < 100 ; i++) {
2 var Foo = func t i on (x , y) {
3 th i s . sum = x + y ;
4 }
5 var Obj = new Foo (1 , 2) ;
6 }

(a)

1 var initAmznJQ = func t i on () {
2 window.amznJQ = new f unc t i on () {
3 var me = this ;
4 me.addLogical = func t i on (. . .) { . . . } ;
5 me .dec l a r eAva i l ab l e = func t i on (. . .) { . . . } ;
6 . . .
7 } () ;
8 window.amznJQ.declareAvai lable (”JQuery ”) ;
9 }

(b)

Figure 5: Examples where dynamic function creation leads to
inline cache misses: a contrived code for illustration purposes
(a), and real code in the Amazon.com website (b).

ter Foo is called as a constructor in line 5, V8 creates an
object (1© in Figure 6(a) but initially empty), along with
a hidden class (2©) for the object with __proto__ pointing
to Foo.prototype (3©). When the inline cache in line 3 is
reached, it sees hidden class 2© for the first time, and so
it misses. The runtime miss handler creates a new hidden
class (4©) with the new property sum. Also, the value of sum
is added at the correct offset in object 1©, and the object’s
type is updated to be the new hidden class 4©.

������� �	

���
������ �����������������

���������

���������

�������� 	

���

��
 �

������

������	���� 	�����������

	

����� �

������������

�������������

��������

�������� 	

���

�

�

�

���������

���������

�������� 	

���

��
 �

������

���������	
 	��������� �

	

����� �

������������

�������������

������ �

�������� 	

���

� �

!

" # $

%

(a)

������� �	

���
������ �����������������

�

�

�

������	���� ��������	�
�

���
���� �

����������

�����	�������

����	�
�

�	���	�� ���
��

�� �

����
��

������	���� ��������	���

���
���� �

����������

�����	�������

����	���

�	���	�� ���
��

 �	���

 �	���

�
 �

!

" #

(b)
Figure 6: State of the heap after executing iterations of the
loop in Figure 5(a): using the current V8 design (a), and after
restructuring V8 (b).

At iteration 2, when constructor Foo is called, another
empty object is created (5© but empty). Unfortunately, it
cannot reuse the old hidden class 2©, and a new hidden class
(6©) has to be created. The reason is that a new prototype
object (7© in this case) has to be created when a new func-
tion is created, and the __proto__ pointer in the hidden
class 2© is immutable. Therefore, when the inline cache in

line 3 is reached, it has never seen hidden class 6© before.
The inline cache misses again and object 5© transitions to
the new hidden class 8©. Now, the inline cache turns poly-
morphic. Overall, a new hidden class is assigned to Obj at
every iteration, and the inline cache in line 3 misses every
time.

Figure 5(b) shows a similar example, but this time from
actual JavaScript code in the Amazon.com website taken
from the JSBench benchmarks [21]. At line 2, object win-

dow.amznJQ is constructed using the anonymous function
defined between lines 2-7. The actual call to the function
is at line 7, at the end of the definition. A new instance
of the function is created at every call to initAmznJQ and
hence, object window.amznJQ ends up having a different hid-
den class at every invocation due to different prototypes. As
a result, the store inline caches for me.addLogical (line 4)
and me.declareAvailable (line 5) inside the constructor
miss every time, as well as the call inline cache for win-

dow.amznJQ.declareAvailable (line 8).

4.1.2 Prototype Changes due to Built-in Object Cre-
ation

JavaScript specifies a set of built-in functions with which
to construct objects with pre-defined support for some prim-
itive operations. These built-in functions include Object(...),
Function(...), Array(...), and String(...), among oth-
ers. The primitive operations are implemented as properties
in the prototypes of these functions, and objects constructed
using these functions gain automatic access to them through
inheritance. Figure 7 shows the inheritance graph for these
built-in prototypes and their relationship with user-created
objects. The dotted arrows denote the inheritance relation-
ships. All prototype inheritance chains eventually converge
to Object.prototype, which has the null value as its pro-
totype.

���������	
�����
������������
��
�������������

��������������	

����
���������	

�������	���������

��

��

�������	��
����
��

�

�

�������	�����������	

������������	

�����������������	

�������������������

���
���

�������	�����	����

��

��

�������	�������

��

�

Figure 7: Inheritance graph of built-in objects.

The second source of rampant hidden class creation and
type unpredictability is the regeneration of these built-ins
from scratch. One might think that updates to built-in ob-
jects would be rare. However, there is one frequent web
browser event that triggers such updates: Page Loads. When-
ever a page is loaded, semantically JavaScript must create a
new global execution context. The context contains new in-
stances of the built-ins described above because JavaScript

permits modification of even built-in objects in the course
of user-code execution. This means that even when an iden-
tical page is reloaded in the course of a web browser session,
it must re-create all the built-in objects.

Regeneration of the built-in prototype objects causes all
objects that were constructed using the built-in functions
to have different hidden classes, due to the immutability
of the __proto__ property in hidden classes. It also causes
automatically-generated function prototypes that inherit from
Object.prototype to have different hidden classes. This
leads to type unpredictability and, hence, low performance.

4.2 Second Culprit: Method Bindings
The second culprit behind type unpredictability is encod-

ing the bindings of the methods of an object into its hidden
class. The method bindings of an object never change in a
statically-typed language. However, functions are first-class
citizens in JavaScript, and the value of a function property
can change at any time during the lifetime of an object. In
spite of this, the V8 compiler assumes that method bindings
stay mostly static in actual code and optimizes for this case.
However, in real JavaScript code in websites, this assump-
tion does not hold, and causes added type unpredictability.

Function bindings are encoded into hidden classes in V8
by storing the values of function properties in the hidden
class itself, rather than the offsets in the object like regu-
lar properties. These values are immutable, just like off-
sets are immutable in a hidden class. This immutability
allows method bindings to be checked automatically when
hidden classes are checked in call inline caches. However, im-
mutability also means that, if the method binding changes,
a new hidden class has to be created. This gives rise to the
same problem as with prototypes: frequent changes in the
method binding lead to excessive hidden class creation and
type unpredictability.

To hedge against the possibility of frequent method bind-
ing changes, V8 gives up on storing method bindings as soon
as it encounters a change in the value of a function property.
Then, V8 stores the function property in the object, just
like other properties. However, even this hedging results in
significant type unpredictability. To see why, consider the
example in Figure 8. The figure shows a loop that creates
a new object Obj at each iteration, and then assigns new
functions to properties Foo and Bar. The call to function
property Foo at line 5 is made using a call inline cache. We
would like that only a single type reaches the inline cache.

1 for (var i = 0 ; i < 100 ; i++) {
2 var Obj = new Object () ;
3 Obj.Foo = func t i on () {} ;
4 Obj.Bar = func t i on () {} ;
5 Obj.Foo () ;
6 }

Figure 8: Example where assigning a function to an object prop-
erty leads to type unpredictability.

In reality, the type of Obj that reaches line 5 only stabi-
lizes after multiple iterations of the loop. This can seen in
Figure 9(a), which shows the state of the heap at the end of
each iteration of the example loop. This time the __proto__
properties in hidden classes are omitted for brevity.

At iteration 1, in line 2, Obj is initially created as an
empty object (1©) and a new hidden class (2©) is also created
for that object. Initially, 1© points to 2©. In line 3, when

��������

��������

	
�����
����

��������

������� �	

���
������ �����	����������

�������� ������

��� �

�������

������
������������

������������

�������� ������

��� �

�������

��� ������������

�������� ������

���

�������
������

������������

	
�����
����

�������� ������

������������

�������� ������

���

�������

��� ������������

�������� ������

��� �
������

������������

	
�����
����

������������

�������

��� �

������������

� �

�
�

�

!

"

#

��

�� ��

��

��

��

(a)

������� �	

���
������ �����	����������

������
��������	�
�

�

�����	�
�

��	�����	�
�

�	
��	�� ������

�

 �

�����

������ ��������	��� �	
��	�� ������

�

�����	���

�	
��	�� ������

�

 �

������	

��	 �

��	�����	���

������

��������	���
�

�����	���

��	�����	���

�

 �

�
�

�

�

��

�

�

�

��

��������

��������

� ���!�"#���

��������

��������

� ���!�"#���

��������

��������

� ���!�"#���

(b)

������� �	

���
������ �����	����������

������

��������	�
�

�

�����	�
�

��	�����	�
�

��������	���

�

�����	���

������	

��	�����	���

������

��������	���

�

�����	���

��	�����	���

�

�

�

�

��

�

�

�

��

������

�������	�

�����	���

��	

�

�	
��	�� ������

�	
��	�� ������

�	
��	�� ������

�

 �

�	
��	�� ������

�

�	
��	�� ������

�

 �

��	 �

�	
��	�� ������

�

��	

!

�����

�

��������

��������

"������#$���

��������

��������

"������#$���

��������

��������

"������#$���

(c)
Figure 9: State of the heap after executing iterations of the loop
in Figure 8: using the current V8 design (a), using our restruc-
tured V8 (b), and including syntactic function bindings within
hidden classes (c).

function property Foo is assigned an anonymous function
object (3©), a new hidden class (4©) is created with the new
property. Notice that the pointer to the function object 3©

is stored directly in the offset field of property Foo in hidden
class 4©, instead of in object 1©. In line 4, for property Bar,
a new function object (5©) and a new hidden class (6©) are
created. In line 5, the call inline cache for Foo misses and
records the type of Obj.

At iteration 2, a newly created object Obj (7©) is initially
typed to hidden class 2©. However, when function property
Foo is assigned in line 3, it cannot reuse hidden class 4©. This
is because the value of the hidden class function property,
which points to function 3©, differs from the pointer to the
newly created function (8©). At this point, V8 gives up on
storing the method binding for Foo in the hidden class, and
stores it in Obj (7©) instead. The offset of the property is
stored in a new hidden class (9©). When the code reaches
line 4 and tries to assign to property Bar, the property is
not found in hidden class 9©. So a new hidden class (11©) is
created that stores the binding from Bar to the new function
object (10©). At line 5, the call inline cache misses again
because the type of Obj differs from iteration 1. Also, at
this point, the inline cache turns polymorphic.

At iteration 3, a newly created object Obj (12©) is again
initially typed to hidden class 2©. Also, when the function
property Foo is assigned in line 3, the function object 13©

is created, but no new hidden class is created because the
type transitions to hidden class 9©. When function property
Bar is assigned in line 4, it cannot reuse hidden class 11©

because the value of its function property differs from the
newly created function (14©). Hence, V8 gives up on storing
the method binding for Bar in the hidden class and stores
the value in Obj (12©) instead. As before, the offset of the
property is stored into a new hidden class (15©). At line 5,
the call inline cache misses yet again and the new type of
Obj is recorded in the polymorphic cache.

For the rest of the iterations, all objects transition through
hidden classes 2©, 9©, and 15©. No new hidden classes are
created and the type of Obj that reaches line 5 is always
hidden class 15©.

Through this example, note that, beyond the first inline
cache miss, there are as many inline cache misses as there are
function properties assigned to different instances of func-
tions in the object. It is very common for websites to have
large objects that include many function properties. When
they exhibit this behavior, they decrease the type-hit-rate
significantly. Also, note that even though all objects hit in
the inline cache at line 5 starting from iteration 4, the inline
cache will remain polymorphic for the rest of the iterations
due to this design.

Finally, the real-world example of Figure 5(b) also suffers
from the same problem due to the assignment of function
properties addLogical and declareAvailable. Hence, for
window.amznJQ to be truly monomorphic, we need to solve
both the problems of prototypes and method bindings.

5. RESTRUCTURING THE TYPE SYSTEM
The previous section showed how changes in the proto-

types or method bindings of otherwise identically-structured
objects resulted in type unpredictability. In this section,
we restructure the V8 compiler to decouple prototypes and
method bindings from the type of an object, so a change in
either does not result in the creation of a new hidden class.

5.1 Decoupling Prototypes From Types
We decouple prototypes from types by modifying inter-

nal data structures in the compiler such that the __proto__

pointer is moved from the hidden class to the object it-
self. With this change, individual objects now point directly
to their respective prototypes. This change obviates the
need to create a new hidden class whenever the prototype
is changed. Below, we explain how this impacts the two
problematic cases of function creation and built-in object
creation, and briefly go over changes specific to each case.

5.1.1 Optimizing Function Creation

Figure 6(b) shows the state of the heap when executing
the loop in Figure 5(a) after we restructure the compiler.
At the first iteration, before the execution of Foo’s body, an
empty object Obj is created (1© but empty) with its initial
type set to the new hidden class 2©, just as in Figure 6(a).
The difference is that the __proto__ field that points to
Foo.prototype (3©) is now in object 1© and not in its hidden
class 2©. After the execution of the body of Foo, hidden class
4© is created as the type of object Obj (1©).

At the second iteration, object Obj (5©) is created again
with its initial type set to the hidden class 2© that was
created at the previous iteration. This is possible despite
the different prototype object Foo.prototype (6©) because
__proto__ is no longer part of the hidden class. Similarly,
after the execution of the body of Foo, the type of object
Obj (5©) is set to the hidden class 4© created at the previous
iteration. Consequently, Obj now has the same hidden class
at the end of each iteration. As a result, the store inline
cache in line 3 of the example code always sees the same
type and remains in monomorphic state.

In order to enable reuse of hidden classes across multi-
ple dynamic instances of a function, the initial hidden class
of a function (hidden class 2© in the example) is created
only once for each syntactic function. A syntactic function
is a static function instance in the source code as given in
the abstract syntax tree. The initial hidden class is cached
in the internal syntactic function object shared by all in-
stances of that function. A subsequent instance of the func-
tion uses that hidden class as the initial hidden class for its
constructed objects.

5.1.2 Optimizing Built-in Object Creation

Extracting the __proto__ pointer from the hidden class
enables reuse of the hidden classes from the previous global
execution context. Specifically, objects that were created
using the built-in functions that inherited from the built-in
prototype objects can now reuse hidden classes across con-
texts. This is because the regeneration of prototype objects
does not force the regeneration of hidden classes.

In order to enable reuse of hidden classes across multi-
ple contexts, the initial hidden classes of built-in functions
are cached across contexts as in the previous case. Once
objects start from the same initial hidden class, they tran-
sition through the same hidden class tree that was created
in previous executions. In this way, virtually all type unpre-
dictability due to page loads can be eliminated.

5.2 Decoupling Method Bindings From Types
We propose two approaches to decoupling method bind-

ings from types: complete and partial.

5.2.1 Complete Decoupling

We completely decouple method bindings from types by
disallowing the storage of function property values in the
hidden class altogether. Instead, function property values
are always stored in the object itself; the hidden class only
contains the offsets they are stored in, just like for regular
properties.

Figure 9(b) shows the state of the heap at the end of each
iteration of the loop in Figure 8 with Complete Decoupling.
The function property values for Foo and Bar are directly
stored in the allocated object already in the first iteration
(1©). Subsequent iterations transition through the same
hidden classes (2©, 4©, 6©). The reason is that these hid-
den classes store only property offsets which do not change
across iterations. As a result, object Obj now has the same
hidden class (6©) at every iteration when it reaches line 5
of the example code. Hence, the call inline cache for Foo

in line 5 always hits starting from iteration 2, and remains
monomorphic throughout its lifetime.

5.2.2 Partial Decoupling

When method bindings are completely decoupled from
types, inline cache hits on method calls require loading the
method pointer from the object. This adds one extra load
that slightly negatively impacts performance. With Partial
Decoupling, we seek to eliminate this load by still keeping
method bindings in types but in a way that does not result
in excessive hidden class generation. Specifically, in the hid-
den classes, we store bindings to syntactic functions rather
than to function objects. The binary code generated for a
function is stored in the syntactic function object allocated
for that function. Hence, only the binding to the syntactic
function is needed for the purposes of calling a method.

Figure 9(c) shows the state of the heap after executing
the loop in Figure 8 with Partial Decoupling. The dotted
boxes denote hidden classes. Within a hidden class, there
are two tables. The upper table stores the offsets for all the
properties as before, while the lower one stores the syntactic
function bindings of each method. Storing syntactic function
bindings in hidden classes allows the compiler to generate
efficient method calls. At the same time, not storing function
object bindings in hidden classes removes all excessive type
polymorphism. Note that the offsets of methods still need
to be stored in the upper table, since the value of function
properties can be loaded or stored just like any property, in
which case, the function objects will be accessed.

We chose to implement Complete Decoupling for evalua-
tion since we did not observe significant additional overhead
due to indirect method calls for the benchmarks we tested.
However, for codes with frequent method calls, Partial De-
coupling may be more appropriate.

6. DISCUSSION

6.1 Impact of Our Compiler Modifications
Our enhancements to decouple prototypes and method

bindings from object types target the dynamic JavaScript
code often found in real websites. In the following, we con-
sider how our modifications impact the performance and
memory usage of such code, listing the advantages and the
disadvantages.

6.1.1 Impact on Performance

Advantages. The most obvious advantage that comes from
our modifications is that types are now much more pre-
dictable, resulting in increased type-hit-rate and less poly-
morphism in inline caches. Moreover, since optimizing com-
pilers such as Crankshaft for V8 rely on type assumptions
to hold inside the scope of optimization, type predictability
can result in increased optimizations.
Disadvantages. Now that prototypes and method bind-
ings are no longer immutable properties in the hidden class,
the compiler cannot hard-code their values when generating
code for inline caches. Instead, when accessing a prototype
property or invoking a call to a method, we need to load the
prototype pointer or the method pointer, respectively, from
the object. This extra load can induce a slight delay even
on inline cache hits, if a hit involves accessing a prototype
property or calling a method.

6.1.2 Impact on Memory Usage

Advantages. The decoupling of prototypes decreases the
total number of hidden classes in the heap, reducing memory
pressure. For example, consider Figure 6. Let I be the num-
ber of iterations and P the number of properties assigned in
the constructor. Then, the number of hidden classes before
the decoupling is bound by O(I * P) while, after the de-
coupling, it is bound by only O(P). The same occurs for the
decoupling of method bindings. For example, consider Fig-
ure 9. Let I be the number of iterations and P the number
of properties assigned using dynamically-allocated functions.
Then, the number of hidden classes before the decoupling is
bound by O(min(I, P) * P) while, after the decoupling, it
is bound by only O(P). Moreover, the reduced polymorphism
in the inline caches also leads to a reduction in the amount
of memory allocated to the code cache.
Disadvantages. When the __proto__ pointer is moved
from the hidden class to the object for prototype decoupling,
it can cause increased memory use since, typically, there are
more objects than hidden classes in the heap. The same can
be said when function pointers are moved from the hidden
class to the object for method binding decoupling. Also,
the extra added pointers in the objects can require a tracing
garbage collector to do extra traversals, slowing it down.

6.2 Other JavaScript Compilers
There exist popular JavaScript compilers other than V8,

such as JavaScriptCore [3] for Safari, SpiderMonkey [6] for
Firefox, and Chakra [1] for Internet Explorer. We have tried
to find out if these compilers define types in the same way
as V8. Unfortunately, this information is not publicly avail-
able, and one needs to dig into the compiler source code
to find out — as we did for V8. Our initial research ex-
amining the JavaScriptCore source code seems to indicate
that JavaScriptCore also creates hidden classes (called struc-
tures) and that, as in V8, the __proto__ pointer in the hid-
den class is immutable. Also, past literature [14] seems to
indicate that SpiderMonkey also includes prototypes as part
of the type definitions of objects. Chakra is closed-source so
we could not find out much.

Irrespective of how other compilers are implemented, we
hope that our findings help JavaScript compiler writers and
programmers understand the trade-offs and make the right
design choices.

7. EVALUATION

7.1 Experimental Setup
To evaluate our enhancements, we use the JSBench bench-

mark suite [21]. JSBench assembles JavaScript code from
real websites such as Amazon, Facebook, Google, Twitter,
and Yahoo, by recording a series of user interactions on in-
dividual webpages. Each benchmark in JSBench records
about one minute worth of user interactions on a single
representative webpage from the website, starting from the
page load. The benchmark models a common use of a web-
site, where the user performs a few interactions with a cer-
tain webpage before reloading the page or getting redirected
to another page. Since JavaScript execution differs slightly
from browser to browser, JSBench sometimes pairs the same
website with multiple browsers. We also briefly character-
ize the popular benchmark suites Kraken 1.1 [4], Octane [5],
and SunSpider 0.9.1 [7], to see differences with JSBench.

We implement our enhancements in the most recent ver-
sion of the Chrome V8 JavaScript compiler [8]. We build
on top of the Full compiler, which is the lower-tier compiler
of V8 that only does inline caching, and disable Crankshaft,
which is the V8 optimizing compiler. As we saw in Sec-
tion 3, Crankshaft does not improve JSBench in any way.
Implementing our enhancements on the more complicated
Crankshaft is more elaborate, and is left as future work.

To measure performance and memory management over-
head, we run the benchmarks natively on a 2.4 GHz Xeon
E5530 machine with an 8-MB last-level cache and a 24-GB
memory. To measure other metrics, such as the dynamic in-
struction count and the number of inline cache accesses, we
instrument the V8 runtime and the compiler-generated code
with Pin [17]. To report the average of the benchmarks in a
benchmark suite, we use the arithmetic mean (amean). The
only exception is that we use the geometric mean (gmean)
for the execution time.

In our experiments, for each benchmark, we execute three
warm-up iterations before taking the actual measurements
in the fourth iteration. The three warm-up iterations allow
time for the code caches and inline caches to warm up. As
indicated above, in the JSBench benchmarks, every iteration
is preceeded by a page load; this is analogous to multiple
visits to the same page during a single browser session.

We test four compiler configurations: B, B*, P, and C.
The baseline (B) is the original V8 compiler. B* is the orig-
inal V8 compiler after disabling the flushing of inline caches
on page loads. This configuration is interesting because our
enhancements (especially the built-in object optimization
described in Section 5.1.2) rely on inline caches surviving
page loads. The Chrome web browser flushes inline caches
at every page load because, without our enhancements, in-
line caches are mostly useless across page loads. The rest of
the configurations are built on top of B*. Specifically, P is
B* enhanced with the Prototype decoupling of Section 5.1.
Finally, C is B* enhanced with the Combination of both
the prototype decoupling of Section 5.1 and the complete
method binding decoupling of Section 5.2.1.

7.2 Characterization
We start by investigating why V8’s optimizations have

little impact on JSBench compared to the popular bench-
marks, as seen in Figure 4. Figure 10 breaks down the
dynamic instructions of the benchmarks in the B configu-

ration. The benchmarks are organized as in Figure 4. Dy-
namic instructions are categorized into five types: Code,
Load IC Miss, Call IC Miss, Store IC Miss, and Runtime.
Code are instructions in the code generated by the V8 com-
piler. Load IC Miss, Call IC Miss, and Store IC Miss are
instructions in the runtime inline cache miss handlers for
loads, calls, and stores, respectively. Runtime are instruc-
tions in other runtime functions that implement JavaScript
libraries such as JSON calls, string operations, and regular
expressions.

0

10

20

30

40

50

60

70

80

90

100

N
o

rm
a

liz
e

d
 I

n
s
tr

u
c
ti
o

n
s

Runtime Store_IC_Miss Call_IC_Miss Load_IC_Miss Code

am
azon-chrom

e

am
azon-opera

facebook-chrom
e

google-chrom
e

google-firefox

google-opera

tw
itter-w

ebkit

yahoo-firefox

yahoo-opera

jsbench-am
ean

kraken-am
ean

octane-am
ean

sunspider-am
ean

Figure 10: Breakdown of dynamic instructions by category.

The portion of instructions running compiler-generated
code in JSBench is very small compared to the popular
benchmarks. In JSBench, the bulk of the instructions exe-
cute in the runtime (including handling inline cache misses),
and this is why compiler optimizations have so little effect.
Also, on average, about half of all the instructions run inline
cache miss handlers. These inline cache misses in JSBench
are the target of our optimizations.

7.3 Impact on Performance

7.3.1 Execution Time

Figure 12 shows the execution time of JSBench for each
of the four configurations normalized to B. We see that B*
is 23% slower than B on average, confirming that keeping
inline caches across page loads does not benefit the baseline
design. However, applying prototype decoupling (P) brings
down the average execution time to 73% of B, and further
applying method binding decoupling (C) brings it down to
64% of B. In theory, method binding decoupling can be ap-
plied without prototype decoupling; however, it only im-
proves performance marginally if applied by itself. Overall,
our optimizations reduce the execution time of JSBench by
36% on average.

am
azon-chrom

e

am
azon-opera

facebook-chrom
e

google-chrom
e

google-firefox

google-opera

tw
itter-w

ebkit

yahoo-firefox

yahoo-opera

jsbench-gm
ean

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

E
x
e
c
u
ti
o
n
 T

im
e

B B* P C

Figure 12: Execution time of JSBench normalized to B.

0

10

20

30

40

50

60

70

80

90

100

110
N

o
rm

a
liz

e
d

 I
n

s
tr

u
c
ti
o

n
s

Runtime
Store_IC_Miss
Call_IC_Miss
Load_IC_Miss
Code

B B* P C
am

azon-chrom
e

B B* P C
am

azon-opera

B B* P C
facebook-chrom

e

B B* P C
google-chrom

e

B B* P C
google-firefox

B B* P C
google-opera

B B* P C
tw

itter-w
ebkit

B B* P C
yahoo-firefox

B B* P C
yahoo-opera

B B* P C
jsbench-am

ean

B C
kraken-am

ean

B C
octane-am

ean

B C
sunspider-am

ean

Figure 11: Dynamic instruction count normalized to the original V8 compiler (B).

7.3.2 Type Predictability

We now examine the improvement in type predictability
due to our enhancements. We assess the improvement by
measuring increases in the type-hit-rate and reductions in
polymorphism for all inline caches. Figure 13 shows a break-
down of inline cache accesses into five categories: Initial
Misses, Polymorphic Misses, Monomorphic Misses, Poly-
morphic Hits, and Monomorphic Hits. Initial Misses are
inline cache misses that happen when an inline cache is ac-
cessed for the first time and there is no previously recorded
type. Polymorphic Misses and Monomorphic Misses are
misses suffered by an inline cache when it is in the poly-
morphic or monomorphic state, respectively. Polymorphic
Hits and Monomorphic Hits are the same for inline cache
hits.

0

10

20

30

40

50

60

70

80

90

100

In
lin

e
 C

a
c
h
e
 A

c
c
e
s
s
e
s

Mono Hits Poly Hits Mono Misses Poly Misses Initial Misses

B B* P C
am

azon-chrom
e

B B* P C
am

azon-opera

B B* P C
facebook-chrom

e

B B* P C
google-chrom

e

B B* P C
google-firefox

B B* P C
google-opera

B B* P C
tw

itter-w
ebkit

B B* P C
yahoo-firefox

B B* P C
yahoo-opera

B B* P C
jsbench-am

Figure 13: Breakdown of inline cache accesses by category.

B suffers significantly from Initial Misses due to the flush-
ing of inline caches at every page load. B* suffers much less
from Initial Misses, as inline caches are allowed to warm up.
However, without our enhancements, many accesses miss
anyway and become Polymorphic Misses and Monomorphic
Misses. Also, the number of Polymorphic Hits increases
greatly, as inline caches accumulate different types from pre-
vious warm-ups. However, with P and then C, most of the
misses and much of the polymorphism go away. The result
is that C has a 97% overall hit rate, and an 86% monomor-
phic hit rate. In contrast, B has a 79% overall hit rate and
a 72% monomorphic hit rate.

7.3.3 Dynamic Instruction Count

Figure 11 shows the dynamic instruction count of JSBench
for all the configurations. There are also bars for the aver-
ages for Kraken, Octane, and SunSpider for the B and C
configurations. All bars are normalized to B and broken
down into the same categories as in Figure 10. Kraken, Oc-
tane, and SunSpider show no improvements as expected, but
we note that our modifications do not cause overhead either.

Overheads could come from the extra loads required for pro-
totype property accesses and method calls, as explained in
Section 6.1.1. Also, the fact that the number of instruc-
tions spent in Code is almost identical between C and B in
JSBench shows that these overheads are negligible in JS-
Bench too. The rest of this section will focus exclusively on
JSBench.

For JSBench, the average number of instructions increases
slightly to 104% in B* but decreases to 61% in P and de-
creases further to 51% in C. Overall, our optimizations elimi-
nate on average 49% of the dynamic instructions in JSBench.

Looking at the instruction breakdown, we see that the re-
duction in dynamic instructions comes from a lower inline
cache miss handling overhead, which in turn comes from im-
provements in type predictability enabled by our optimiza-
tions. With all of our enhancements applied (C), inline cache
miss handling accounts for only 13% of the dynamic instruc-
tions, compared to 50% in B. The sources of the remaining
misses in C are non-type-related. They include cases such as
loads from non-existent properties of an object, or accesses
to special properties defined by“getters”and ”setters”, which
require callbacks to user-defined functions.

Comparing B to B*, the increase in dynamic instructions
is often due to a higher number of instructions spent han-
dling inline cache misses in B*. This is despite the consistent
decrease in the number of inline cache misses when going
from B to B* in Figure 13. The reason is because misses
in B* are more expensive on average. The V8 compiler has
a policy of not generating code for the very first miss of
an inline cache. The purpose is to refrain from performing
expensive code generation for inline caches that will only
be accessed once. This policy makes Initial Misses much
cheaper than Monomorphic Misses or Polymorphic Misses,
which are prevalent in B*.

Finally, the increase in instructions from B to B* trans-
lates into a large increase in execution time in Figure 12.
We believe this is due to branch misprediction and cache
effects from polymorphism, although we did not investigate
further.

7.3.4 Function Property Binding Optimization

Section 4.2 described how inline cache misses resulting
from object type polymorphism due to method bindings can
go away after enough iterations of the code. Figure 14 shows
how many warm-up iterations are needed for this to happen
with JSBench. The bars in the figure show dynamic instruc-
tions broken down into the usual five categories. There are
bars for P and C, which perform 3 warm-ups as usual. The
bars labeled 10, 20, and 50 correspond to P after the given
number of warm-ups. For a given benchmark, the bars are

0
10
20
30
40
50
60
70
80
90

100
N

o
rm

a
liz

e
d

 I
n

s
tr

u
c
ti
o

n
s

Runtime
Store_IC_Miss
Call_IC_Miss
Load_IC_Miss
Code

P 10 20 50 C

am
azon-chrom

e

P 10 20 50 C

am
azon-opera

P 10 20 50 C

facebook-chrom
e

P 10 20 50 C

google-chrom
e

P 10 20 50 C

google-firefox

P 10 20 50 C

google-opera

P 10 20 50 C

tw
itter-w

ebkit

P 10 20 50 C

yahoo-firefox

P 10 20 50 C

yahoo-opera

P 10 20 50 C

jsbench-am
ean

Figure 14: Dynamic instruction count when running with configuration P after 3, 10, 20, and 50 warm-up iterations, and when running
with configuration C.

Benchmark
Heap Allocated Allocated

Heap
Reduction

(%)

Collection
Time

Increase
(%)

Baseline Enhanced
Object Code Hidden Class Total Object Code Hidden Class Total
(KB) (KB) (KB) (KB) (KB) (KB) (KB) (KB)

amazon-chrome 208 86 110 (843) 404 217 37 13 (128) 267 33.9 4.7
amazon-opera 205 88 113 (848) 406 211 34 13 (129) 258 36.5 5.9
facebook-chrome 6353 150 741 (3156) 7244 6401 173 48 (482) 6622 8.6 1.3
google-chrome 1229 410 387 (3228) 2026 1295 232 53 (439) 1580 22.0 2.9
google-firefox 925 295 346 (2998) 1566 970 169 40 (326) 1179 24.7 1.9
google-opera 5542 786 691 (4944) 7019 5955 472 227 (2099) 6654 5.2 5.3
twitter-webkit 177 37 46 (316) 260 185 10 0 (15) 195 25.0 6.2
yahoo-firefox 339 149 123 (1034) 611 356 136 46 (365) 538 11.9 4.8
yahoo-opera 342 153 127 (1069) 622 360 143 50 (405) 553 11.1 5.3
jsbench-amean 1702 239 298 (2048) 2240 1772 156 54 (488) 1983 19.9 4.3
kraken-amean 468496 0 0 (0) 468496 468837 0 0 (0) 468837 -0.1 0.1
octane-amean 37405 1 0 (0) 37406 37427 1 0 (0) 37428 -0.1 -3.4
sunspider-amean 3194 0 0 (0) 3194 3222 0 0 (0) 3222 -0.9 12.2
bench-amean 169698 0 0 (0) 169698 169829 0 0 (0) 169829 -0.4 3.0

Table 1: Heap memory allocated and heap collection time for JSBench (top) and the other benchmark suites (bottom).

normalized to P.
The results show that most websites need tens of page

loads for P to approach C without the method binding de-
coupling enhancement. Some websites such as twitter-webkit
perform significantly worse than C even after 50 page loads.

7.4 Impact on Memory Management
In this section, we assess how our optimizations impact

two aspects of memory management: allocated heap mem-
ory and garbage collection overhead. Consider the heap
memory first. For each JSBench website, we measure the
new heap memory allocated during the measured iteration.
Recall that we measure one iteration of the website execu-
tion after three warm-up iterations, where each iteration in-
cludes a page reload. With our optimizations, the measured
iteration allocates less heap memory than before for two rea-
sons. First, the iteration is able to substantially reuse inline
cache code and hidden classes from previous iterations. Sec-
ond, the iteration is also able to reduce the number of hidden
classes used even within an iteration.

The upper part of Table 1 shows the new heap allocated in
the measured iteration for each JSBench website. Columns
2-5 correspond to the baseline compiler, while Columns 6-
9 correspond to the compiler with our enhancements. In
each case, we show the heap consumed by JavaScript ob-
jects, compiler-generated code, hidden classes, and the to-
tal. For hidden classes, the number inside the parentheses is
the number of hidden classes generated. Looking at the JS-
Bench average row, we see that our optimizations increase
the object memory (due to adding the __proto__ pointer
to objects). However, thanks to the two reasons described

above, the code memory and, especially, the hidden class
memory, go down. The result is a lower total heap alloca-
tion. Column 10 shows the total reduction in heap memory
allocated in each website due to our optimizations relative to
the baseline. On average, we reduce the heap memory allo-
cated by a sizable 19.9%. This will make garbage collections
less frequent.

For comparison, the lower part of Table 1 shows data for
the three popular benchmark suites. Recall that, for these
benchmarks, we also measure one iteration after three warm-
up iterations, and there are no page reloads. We can see
that there is barely any generation of new hidden classes or
code after warm-up. This is expected, since types are very
stable in these benchmarks. In addition, it can be shown
that most objects in these benchmarks are primitives such as
integers and floats that do not have prototypes. As a result,
the added memory due to the extra __proto__ pointer in
objects is minimal. Consequently, our optimizations barely
change the heap allocation. As shown in Column 10, our
optimizations increase the total heap allocated by 0.4% on
average for the three benchmark suites.

We now consider the overhead of collecting the heap used
in the measured iteration of JSBench. Before we execute
the iteration, we run the garbage collector. Then, after we
execute the iteration, we immediately trigger the collection
of all the heap used in the iteration. For the compiler with
our optimizations, we collect both the new heap generated
in the measured iteration plus the heap reused from previ-
ous iterations; for the baseline compiler, we only need to
collect the new heap generated in the measured iteration,
since there is no reuse from previous iterations.

In our enhanced compiler, the time to collect this heap in
JSBench may be higher or lower than in the baseline com-
piler. On the one hand, it may be higher because, by moving
the __proto__ pointers from the hidden classes to objects,
we require the V8 mark-and-sweep collector to traverse more
pointers — in the case where there are multiple objects of
each type. On the other hand, the time may be lower be-
cause our optimizations reduce the number of hidden classes,
even without reuse across iterations.

The last column of Table 1 shows the resulting increase in
heap collection time with our optimizations relative to the
baseline. We see that, on average for the JSBench websites,
we increase the time by 4.3%. This means that the first effect
listed above dominates without reuse. Given that the new
heap generated by the enhanced compiler is 19.9% smaller
and most of the reduction comes from reuse, we expect col-
lection time to decrease if we were to collect only the new
heap. But unfortunately collecting only the new heap is in-
feasible. For the three popular benchmark suites, the time
increases by a modest 3.0% on average. This is consistent
with the relatively small increase in total heap memory use.

8. RELATED WORK
Richards et al. [23, 22] and Ratanaworabhan et al. [20]

have performed empirical studies to evaluate how program-
mers use some of the JavaScript features in real websites,
as well as in some of the popular benchmark suites. These
studies have shown that the popular benchmarks are differ-
ent from the websites with respect to call site dynamism,
the frequency of property additions and deletions after ob-
ject construction, constructor polymorphism, and how pro-
grammers use eval. These works were done at the program
behavioral level, and did not analyze how these behaviors
impact the compiler and the resulting performance.

Modern JavaScript engines use key ideas from SmallTalk
[13] and Self [11] on how to optimize dynamically-typed,
object oriented languages, such as hidden classes [11], inline
caches [13], and polymorphic inline caching [15].

There are other proposed techniques to speedup JavaScript
programs that are orthogonal to the techniques discussed in
this paper; they could be used together with our compiler
modifications. For instance, recent works decrease over-
heads through program analysis, to statically infer a vari-
able’s type [14, 16]. Another proposal extends the ISA to
load and check the type with a single instruction [9]. Fi-
nally, ParaGuard [19] and ParaScript [18] propose hardware
support for parallel execution of JavaScript programs. The
former offloads the runtime checks to another thread while
the main thread continues with the execution of the user
code; the latter uses speculative parallelization to support
loop-level parallelization of JavaScript programs.

9. CONCLUSIONS
This paper analyzed the impact of the Chrome V8 com-

piler optimizations on JavaScript code from real websites
assembled by JSBench, and found that it lags far behind
the impact on popular benchmarks. We identified the core
problem hampering optimizations as type unpredictability.
The problem stems from the way the compiler understands
the notion of types. V8 encodes into types two pieces of
information unrelated to object structure: (1) the inher-
ited prototype and (2) method bindings. This was done
assuming that the behavior of JavaScript code mimics that

of statically-typed languages, where the inherited class and
method bindings cannot change once an object is created.
We showed that this assumption is often false for JavaScript
code used in real websites.

We proposed three optimizations that, by rethinking types
to accommodate the dynamic behavior of JavaScript web-
site code, eliminate most type unpredictability. In JSBench,
these optimizations reduced, on average, the execution time
by 36%, and the dynamic instruction count by 49%. More-
over, the heap memory allocated decreased by 20%, due to
reductions in hidden classes and inline cache code.

10. REFERENCES

[1] Chakra. http://blogs.msdn.com/b/ie/archive/2010/03/18/
the-new-javascript-engine-in-internet-explorer-9.aspx.

[2] ECMAScript. http://www.ecmascript.org/.
[3] JavaScriptCore. http://trac.webkit.org/wiki/JavaScriptCore.
[4] Kraken Benchmarks. http://krakenbenchmark.mozilla.org/.
[5] Octane Benchmarks. https://developers.google.com/octane.
[6] SpiderMonkey Project. https://developer.mozilla.org/en-

US/docs/SpiderMonkey.
[7] SunSpider Benchmarks. http://www.webkit.org/perf/sun-

spider/sunspider.html.
[8] V8 JavaScript Engine. https://developers.google.com/v8/.
[9] O. Anderson, E. Fortuna, L. Ceze, and S. Eggers. Checked

load: Architectural support for JavaScript type-checking on
mobile processors. In HPCA, 2011.

[10] J. Castanos, D. Edelsohn, K. Ishizaki, P. Nagpurkar,
T. Nakatani, T. Ogasawara, and P. Wu. On the benefits and
pitfalls of extending a statically typed language JIT compiler
for dynamic scripting languages. In OOPSLA, 2012.

[11] C. Chambers, D. Ungar, and E. Lee. An efficient implemen-
tation of SELF, a dynamically-typed object-oriented lan-
guage based on prototypes. In OOPSLA, 1989.

[12] D. Clifford. Breaking the JavaScript limit with V8.
http://v8-io12.appspot.com.

[13] L. P. Deutsch and A. M. Schiffman. Efficient implementation
of the Smalltalk-80 system. In POPL, 1984.

[14] B. Hackett and S.-Y. Guo. Fast and precise hybrid type in-
ference for JavaScript. In PLDI, 2012.

[15] U. Hölzle, C. Chambers, and D. Ungar. Optimizing
dynamically-typed object-oriented languages with polymor-
phic inline caches. In ECOOP, 1991.

[16] S. Li, B. Cheng, and X.-F. Li. TypeCastor: Demystify dy-
namic typing of JavaScript applications. In HiPEAC, 2011.

[17] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
Building customized program analysis tools with dynamic
instrumentation. In PLDI, 2005.

[18] M. Mehrara, P.-C. Hsu, M. Samadi, and S. Mahlke. Dy-
namic parallelization of JavaScript applications using an
ultra-lightweight speculation mechanism. In HPCA, 2011.

[19] M. Mehrara and S. Mahlke. Dynamically accelerating client-
side web applications through decoupled execution. In CGO,
2011.

[20] P. Ratanaworabhan, B. Livshits, and B. G. Zorn. JSMeter:
Comparing the behavior of JavaScript benchmarks with real
Web applications. In the USENIX Conference on Web Ap-
plication Development, 2010.

[21] G. Richards, A. Gal, B. Eich, and J. Vitek. Automated con-
struction of JavaScript benchmarks. In OOPSLA, 2011.

[22] G. Richards, C. Hammer, B. Burg, and J. Vitek. The Eval
that men do: A large-scale study of the use of Eval in
JavaScript applications. In ECOOP, 2011.

[23] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis
of the dynamic behavior of JavaScript programs. In PLDI,
2010.

