CS6013 - Modern Compilers: Theory and Practise

Control flow analysis

V. Krishna Nandivada

IIT Madras

unsigned int fib(m)
unsigned int m;

1 receive m (val)
{ unsigned int f0 = 0, f1 = 1, £2, i; 2 £0 <« 0
if (m<= 1) { 3 f1l <« 1
return m; 4 if m <= 1 goto L3
} 5 i« 2
else { 6 L1: if i <= m goto L2
for (i = 2; i <= m; i++) { 7 return 2
f2 = f0 + £f1; 8 L2: f2 « f0 + f1
f0 = f1,; 9 fO0 « f1
f1 = £2; 10 fl « 2
} 11 iei+1
return f2; 12 goto L1
} 13 L3: return m

@ IR for the C code (in a format described in Muchnick book)

@ receive specifies the reception of a parameter and the
parameter-passing discipline (by-value, by-result, value-result,
reference). Why do we want to have an explicit receive instruction?—
Gives a point of definition for the args.

@ What is the control structure? Obvious?
V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 3/44

Control flow analysis

source
code

Scanner |- =°KENS | parger Symbol
Table
syntactic structure

emantic | IR | Ontimizer IR Code

?—(outmes | Optimizer — Generator
object
code

@ Code optimization requires that the compiler has a global
“understanding” of how programs use the available resources.

@ |t has to understand how the control flows (control-flow analysis) in the
program and how the data is manipulated (data-flow analysis)

@ Control-flow analysis: flow of control within each procedure.

@ Data-flow analysis: how the data is manipulated in the program.
V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021

Example - flow chart and control-flow

e
:

m<— Y A
| ot 7] s

1 [s | s

w

=

i<
6

7 [ronen 72 s [Feworn Y

| 85 | | B6 |

f1 « £2

i« i+l

exit

@ The high-level abstractions might be lost in the IR.

@ Control-flow analysis can expose control structures not obvious in the
high level code. Possible? Loops constructed from i f and goto

oA ba3|c block is mformally a straight- I|ne sequence of code that can b
I ginhing

V.Krishna Nandivada (IIT Madras) CSGO13 Aug 2021

Basic blocks - what do we get? Deep dive - Basic block

Basic block definition
@ entry and exit are added for

reasons to be explained later.
@ We can identify loops by using

@ A basic block is a maximal sequence of instructions that can be entered
only at the first of them

@ The basic block can be exited only from the last of the instructions of the

dominators basic block
e anode A in the flowgraph dominates o _ _ , _
a node B if every path from ent ry @ Implication:First instruction can be a) entry point of a routine,b) item
node to B includes A. target of a branch, c¢) item instruction following a branch or a return.
e This relations is antisymmetric, @ First instruction is called the leader of the BB.
reflexive, and tran.smve. How to construct the basic block?
@ back edge: An edge in the flow graph, @ Identify all the leaders in the program.

whose head dominates its tail

(example - edge from B6 to B4 @ For each leader: include in its basic block all the instructions from the

leader to the next leader (next leader not included) or the end of the
@ A loop consists of subset of nodes routine, in sequence.

dominated by its entry node (head of What about function calls?
the back edge) and having exactlys®
one back edge in it.

@ In most cases it is not considered as a branch+return. Why?

@ Problem with setjmp() and longjmp()? [self-study]

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 5/44 V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 6/44

CFG - Control flow graph CFG continued

@ successor and predecessor — defined in a natural way.

@ A basic block is called branch node - if it has more than one
sSuccessor.

Definition:
@ A rooted directed graph G = (N, E), where N is given by the set of
basic blocks + two special BBs: entry and exit.

i) @ join node — has more than one predecessor.
@ And edge connects two basic blocks »; and b, if control can pass

@ For each basic block b:

from b; to b,.
@ An edge(s) from entry node to the initial basic block(s?) Succ(b) = {n € N|3e € E such that e = b — n}
@ From each final basic blocks (with no successors) to exit BB. Pred(b) = {n € N|Je € E such that e =n — b}

@ A region is a strongly connected subgraph of a flow-graph.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 7144 V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 8/44

Extended basic block Dominators and Postdominators

Extended basic block @ Goal: To determine loops in the flowgraph.

@ a maximal sequence of
instructions beginning with a
leader that contains no join
nodes other than its first node.

@ Has a single entry, but
possible multiple exit points.

@ Some optimizations are more
effective on extended basic
blocks.

@ Why EBBs? Extending “local”
optimizations to EBBs is
straightforward.

@ How to build an EBB, for a
given basic block?

Dominance relation:

@ Node d dominates node i (written d dom i), if every possible execution path from
entry to i includes d.

@ This relations is antisymmetric (a dom b, b dom a = a = b), reflexive (a dom a),
and transitive (if a dom b and b dom c, then a dom c.

@ We write dom(a) to denote the dominators of a.
Immediate dominance:
@ A subrelation of dominance.

@ For a # b, we say a idom b iff a dom b and there does not exist a node ¢ such that
¢ # a and ¢ # b, for which a dom ¢ and ¢ dom b.

@ We write idom(a) to denote the immediate dominator of @ — note it is unique.
Strict dominance:

@ d sdom i, if d dominates i and d # i.
Post dominance:

@ p pdom i, if every possible execution path from i to exit includes p.

@ Opposite of dominance (i dom p), in the reversed CFG (edges reversed, ent
and exit exchanged).
V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 9/44 V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 10/ 44

Computing all the immediate dominators
procedure Dom_Comp(N,Pred,r) returns Node —> set of Node

N: in set of Node procedure Idom_Comp(N,Domin,r) returns Node —> Node
Pred: in Node —> set of Node N: in set of Node
r: in Node Domin: in Node —> set of Node

Y B1 N Y B1 N

Computing all the dominators

begin

r: in Node
D, T: set of Node l | I begin 1
]cll’maiée“?fetrue' boolean 2 n, s, t: Node 2
e s B B3 : [e2]

Domin: Node —> set of Node [: - Tmp: Node —> set of Node
Domin(r) := {r} Idom: Node —> Node
for each n € N - {r} do N for each n € N do

Domin(n) := N “ Tmp(n) := Domin(n) - {n}
od Y od
repeat * for each n € N - {r} do

change := false for each s € Tmp(n) do

* for each n € N - {r} do for each t € Tmp(n) - {s} do
T :=N

for each p € Pred(n) do

if t € Tmp(s) then

- X : Top(n) -= {t} -

od
.= . od . . .
D=t} vt Compute the dominators. oa immediate dominators.
if D # Domin(n) then . .
change := true i Domin(i) od ;‘Tmp_(l)
Domin(n) := D entry {enmtry} for each n € N - {r} do entry #
fi B1 {entry,B1} Idom(n) := Tmp(n) B1 {entry}
od B2 {entry,B1,B2} od B2 {B1}
until !change B3 {entry,B1,B3} return Idom B3 {B1}
return Domin B4 {entry,B1,B3,B4} end || Idom_Comp B4 {B3}
end |1 Dom_Comp BS {entry,B1,B3,B4,B5} BS EB‘%
B6 {entry,B1,B3,B4,B6} .) B6 B4
* Order makes the difference. exit {entry,Bl,exit} Order makes the difference. exit {B1}

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 11/44 V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 12/44

|dentifying loops Loops (contd.)

@ Back edge: an edge in the flowgraph, whose head dominates its @ preheader: a new (initially empty) block is placed just before the
tail.(Counter example) header of a loop
@ all the edges that previously went to the header from outside the
I loop now go to the preheader, and there is a single new edge from
i the preheader to the header.
%
Has a loop, but no back edge — hence not a natural loop. BL B2 [| [B2]
@ Given a back edge m — n, the natural loop of m — n is
@ the subgraph consisting of the set of nodes containing » and all the [B3 | [B3 |
nodes from which m can be reached in the flowgraph without
passing through n, and o @ Adv: helps optimizations that move code from inside a loop to ju

@ the edge set connecting all the nodes in its node set.

; before its header — preheader guarantees that such a place is §
© Node 7 is called the loop header.

available — the code will be put in the pre-header
V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 13/ 44 V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 14/ 44

Algorithm to compute natural loops Loops (contd.)

procedure Nat_Loop(m,n,Pred) returns set of Node

g, n¢ dn Node @ Unless two natural loops have the same header — they are either
Pred: in Node —» set of Node L. R . K
begin disjoint or one is nested inside other.
Loop: set of Node . .
Stack: sequence of Node @ What about the other way? Given two loops with the same header
e oD — can we guarantees that either a) one is nested inside other, or b)
Loop := {m,n} they constitute the same loop?
if m # n then
Stack #= [m]
fi
while Stack # [] do
|| add predecessors of m that are not predecessors of n et F
Il to the set of nodes in the loop; since n dominates m, E-
Il this only adds nodes in the loop 1

p := Stacki-1

Stack e= -1

for each q € Pred(p) do
if q ¢ Loop then

Loop u= {q} B2 EB

Stack #= [g]

1 Py — I

od
od
return Loop
end |l Nat_Loop
V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 15/ 44 V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 16/ 44

Two natural Loops with same header (contd.) Reducibility

e L Bl: if (i <)) @ “Reducibility” — a property of the flowgraphs.
Bl: if (i >= 100) goto B2;) T)
goto bd; else if (i > j) @ A reducible transformation is one that collapses subgraphs into
else if ((i % 10) == 0) goto B3; single nodes (and hence “reduces” the graph).
goto B3; else goto Bd; @ A flow graph is reducible if applying a sequence of such
else B2r ... transformations ultimately reduces it to a single node.
B2: . ”:‘ o1 @ A flow graph G = (N, E) is reducible (or well structured) iff
1ct; B1: B3: govo B @ E can be partitioned into disjoint sets Er — set of forward edges;
B3: g ' ’ i.--'- and Ep — set of backward edges; such that
P sot; B1: e (N,Er) forms a DAG in which every node can be reached from the
got; Bl; B4: ... } entry node.
B4: ' e Ejp has all the back edges.

@ A flowgraph is reducible if all the loops in it are natural loops
(characterized by their back edges) and vice versa.

@ Implication: A reducible flowgraph has no jumps into the middle of
the loops — makes the analysis easy.

@ Read yourself — irreducible flow graphs.

@ Can be fixed — disallow if-then-else?

@ What about loops with multiple entry points?

@ A loop can be most generally described by a strongly connected
component of a flowgraph. £

@ Self reading — Algorithm to compute SCCs.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 17 /44 V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 18/44

Interval analysis Example T1-T2 analysis
!

@ An alternative approach to do control flow analysis.
@ Overall three steps:

e Divide the flowgraph into “regions” of varisous sorts (depending on 1]
the particular approach), 12 Tl T2 *
@ consolidating each region into a new node (called an abstract node
— as it abstracts away what'’s inside the node), and
e replace “entering” and “leaving” edges. [&]

@ Resulting graph is called a abstract flowgraph.

@ The above transformations can be applied in sequence or in Bib
parallel. /\

@ Each abstract node corresponds to a subgraph. Bla 83b

@ The result of applying such transformations on a abstract m/\m Bla

flowgraph is also called control tree.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 19/44 V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 20/ 44

Control tree Interval analysis

Control tree: Interval analysis
@ Root of the control tree is an abstract graph representing the @ Ignores irreducible regions.
orignal graph. @ (Traditional) Uses maximal intervals: A maximal interval, with a
@ The leaves are individual basic blocks. leader £ is the single entry subgraph with entry i, may contain a

natural loop and some acyclic structure dangling from its exits.

@ The nodes between the root and the leaves are the abstract = _ e _ _ _
@ (Newer) minimal interval: A minimal interval is defined to be

nodes representing regions of the flowgraph.
. . @ a natural loop.
@ The edges represent the relationship between each abstract node © a maximal acyclic subgraph
and the node regions. © a minimal irreducible region.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 21/44 V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 22 /44

Example: Maximal and minimal intervals Steps to perform interval analysis

51—\ ﬂ] @ Perform a postorder traversal of the flowgraph — look for loop
B headers, and headers of improper regions.
T a @ For each loop header found, construct its natural loop; and then
reduce it (T1).
~ B3 ’_ﬁ_‘ @ For each improper region — construct a minimal SCC and reduce.
e [Tea | s] B4 BS @ For the entry node and the immediate descendent of a node in a
= = natural loop, construct a maximal acyclic graph with that node as
8 56 its root; may reduce it (T2) if it has more than one node in it.
" " @ lterate till it terminates.
] ES

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 23/44 V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 24/ 44

Example: Interval analysis Approaches to Control flow Analysis

Two main approaches to control-flow analysis of single routines.

@ Both start by determining the basic blocks that make up the
routine.

@ Construct the control-flowgraph.
- First approach:

@ Use dominators to discover loops; to be used in later
optimizations.

@ Sufficient for many optimizations (ones that do iterative data-flow
analysis, or ones that work on individual loops only).

Second approach (interval analysis):
@ Analyzes the overall structure of the routine.
@ Decomposes the routine into nested regions - called intervals.

{B1,{B2,B4},
™ |{B3,{8s,86}},B7}

R @ The resulting nesting structure is called a control tree.
@ A sophisticated variety of interval analysis is called structural
analysis.
V.Krishna Nandivada (lIT Madras) CS6013 - Aug 2021 25/44 V.Krishna Nandivada (lIT Madras) CS6013 - Aug 2021 26/ 44

Structural analysis Examples of (Acyclic) regions

B
@ A more refined form of interval analysis. l ' Bl
@ Differs from basic interval analysis in that it identifies many types
of control structures than just loops. I___I
@ Each such structure is turned into a region and provides a basis

for doing efficient data-flow analysis on each of the different | | if-then
regions.

@ Output - a control tree.
Typically larger than that we find for interval analysis.

But the individual regions are simpler and simpler.

wm
-

if-then- else

@ Region — has exactly one entry point —
How to include an irreducible or improper region? (coming soon).

schema case/switch schema

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 27/ 44 V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 28 /44

Examples of (Cyclic) regions Beyond the discussed regions

ﬁl @ The patterns for the control-flow constructs are determined by the
syntax and semantics of the language.
@ The presented patterns are schematic in nature.
e For example - switch case may or not have a free fall to the next
branch.

e “natural loop” talks about loops that neither a self or a while loop.
@ Will the presented patterns cover all types of intervals seen in

self loop while loop
practise?
@ Another type of pattern is called a proper interval — an arbitrary
i l acyclic structure; contains no cycles and cannot be reduced to
@ any of the simple acyclic cases.
Y
B2 [B2 &= B3 |
natural loop schema improper interval schema
Example:
V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 29/44 V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 30/44

Structural analysis - computation Structural analysis - algorithm

@ Process is similar to that of interval analysis — except that there
are more patterns.

@ Construct a depth-first spanning tree for the flowgraph.
@ Examine the flowgraphs’s nodes in postrder, for instances of the

—\‘ L ’;’7 various regions.

B e Form abstract nodes for each region.
1 e Collapse the connecting edges.

/ \ @ Build the control tree in the proces.

o . . , "
B2 B3 Self reading: how to identify these intervals”
I | I—

Example:

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 31/44 V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 32/44

Example - structural analysis How to detect Improper regions

[]
~ & oo
@ Add the lowest common dominator (ncd) of the set of entry points
() (1) for the multiple-entry cycle.
@ Find a node that is reachable from ncd. Say n.
@ If there exists a path from n to any element of 7 — add n.
—
()
V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 33/44

Improper regions and Importance of order Who uses what?

We studied two techniques: dominators based and interval analysis
based. Which is used in practise?

@ Most optimizing compilers dominators and iterative data flow
analysis — its easy/quick to write.

But
@ The interval-based approaches are faster.

@ The interval-based approaches help easy update of computed
data (don’t need to recompute from scratch).

@ interval = (improper) {B1, B2, B3, B4, B5} {B6}
@ Say, we choose B3 before B2: a) {B1, B3, B4}, {B2, B5};
Otherwi B2 B3. B4 B

»,
/\ e. D », D D4
V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 36/44

Uses of Structural analysis Control flow optimization

@ Goal: produce longer basic blocks. What is it good for?
e Can help increase instruction-level parallelism.

@ Reduce code size.

@ Structural control flow analysis to the aid of Constant propagation.
@ Control flow optimizations

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 37/44 V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 38/44

Unreachable code elimination Straightening

@ Fuses basic blocks if the predecessor has only one successor and
the successor has only one predecessor.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 39/44 V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 40/ 44

f simpliication

@ Transforming a while loop to @ do-while Of repeat-until

@ Simplify if conditions: loop.
e Say the then part is empty — reverse the condition. @ Adv:
o If both then and else are empty — remove both and keep the e Only one jump to end the loop.
condition. Why? e Gives a guarantee that the loop will be executed for sure.

e 'Predicate’ evaluates to a constant — throw away then or else x = 3;
part. What about the predicate evaluation? while (cond) {
o Nested if-then-else statements where the outer predicate = inner S1;

predicate. x = 4;

}

// Q: Is x a constant here?

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 41/44 V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 42 /44

Examples - loop inversion Closing remarks

What have we done?
@ Control flow analysis (identifying loops and interval analysis).

@ Where the loop condition is known to hold for the first iteration. @ Control flow optimizations.
@ Where the loop condition is not guaranteed to hold for the first To read
iteration.

@ Muchnick - Ch 7, (parts of) Ch 18.
Next:
@ Data flow analysis

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 43/ 44 V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2021 44/ 44

