CS6013 - Modern Compilers: Theory and Practise Dependence testing

V. Krishna Nandivada

IIT Madras

Opening remarks

What have we done so far?

- Compiler overview.
- Scanning and parsing.
- JavaCC, visitors and JTB
- Semantic Analysis specification, execution, attribute grammars.
- Type checking, Intermediate Representation, Intermediate code generation.

CS6013 - Aug 2021

- Control flow analysis, interval analysis, structural analysis
- Data flow analaysis, intra-procedural constant propagation.
- Dependence analysis

Today: Dependence testing

2/15

Example dependence testing

for	(i	=	1	••	4)	{
b[i]=a[4*i]+2.0;						
a[2	2*i-	+1]	=1	.0	/i;	
}						

- For same iteration dependence: Find i 4*i = 2*i+1
- For inter-iteration dependence, find i1 and i2 4*i1 = 2*i2+1

for (i = 1 .. 4) {
 b[i]=a[3*i+5]+2.0;
 a[2*i+1]=1.0/i;
}

For same iteration dependence: Find i: 3*i-5 = 2*i+1 and 1 ≤ i ≤ 4.
For inter-iteration dependence, find i1

and i2 $3 \pm i1 - 5 = 2 \pm i2 \pm 1$, $1 \le i1 \le 4$, $1 \le i2 \le 4$.

Take aways

- If the loop limits were not constant expressions the inequality will only have the lower limit.
- In general, testing for dependence and identifying what is the dependence:
 - Constrainted Diophantine equations
 - solving one more equations with integer coefficients +
 - solution satisfying the inequality.
 - Recall: Solving Integer linear programs is NP-complete.
- What if the constraints are not linear not usual.

Problem setup

We assume loops and multi-dimensional array accesses of the form:

for
$$(i_1 = 1.. hi_1)$$
 {
for $(i_2 = 1.. hi_2)$ { ...
for $(i_n = 1.. hi_n)$ { ...
 $x[..., a_0 + a_1 * i_1 + ... + a_n * i_n, ...]$
 $...$
 $x[..., b_0 + b_1 * i_1 + ... + b_n * i_n, ...]$
 $...$

- may be accessed inside loop nest using indices of multiple loops.
- Dependence present iff, for each subscript position in the equation

$$a_0 + \sum_{j=1}^n a_j * i_{j_1} = b_0 + \sum_{j=1}^n b_j * i_{j_2}$$

and the following inequalities are satisfied: $\forall j = 1 \cdots n$

$$\begin{array}{l} 1 \leq i_{j_1} \leq h_{j_2} \\ 1 \leq i_{j_2} \leq h_{j_2} \end{array}$$

V.Krishna Nandivada (IIT Madras)

CS6013 - Aug 2021

GCD test - intuition

- A simple and sufficient test
- if a loop carried dependency exists between X[a * i + b] and X[c * i + d], then GCD (c, a) must divide (d b).

 $a1 * x1 + a2 * x2 + \cdots an * xn = c$

has an integer solution for x1, x2, ..., iff

GCD $(a1, a2, \cdots an)$ divides c.

V.Krishna Nandivada (IIT Madras)

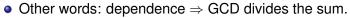
CS6013 - Aug 2021

GCD Test formula

- Developed by Utpal Bannerjee and Robert Towle (1976).
- Comparatively weak test (Marks too many accesses as dependent).
- If for any one subscript position

$$GCD\left(\bigcup_{j=1}^{n} Sep(a_j, b_j, j)\right) \neg / \sum_{j=0}^{n} (a_j - b_j)$$

where


• GCD - computes the Greatest common divisor for the set of numbers.

CS6013 - Aug 2021

- " $x \neg / y$ " means that *x* does not divide *y*.
- ٩

 $Sep(a,b,j) = \begin{cases} \{a-b\} & \text{looking for intra iteration dependence} \\ \{a,b\} & \text{otherwise} \end{cases}$

then the two references to the array are independent.

8/15

5/15

V.Krishna Nandivada (IIT Madras)

Say the loops are not canonical, but are of the form:

for $i_j \leftarrow lo_j$ by inc_j to hi_j

$$GCD\left(\bigcup_{j=1}^{n} Sep(a_j * inc_j, b_j * inc_j, j)\right) \neg /a_0 - b0 + \sum_{j=0}^{n} (a_j - b_j) * lo_j$$

- A pair of array references is <u>separable</u> if in each pair of subscript positions, the expressions found are of the form: a * x + b1 and a * x + b2.
- A pair of array references is <u>weakly separable</u> if in each pair of subscript positions, the expressions found are of the form: a1*x+b1 and a2*x+b2.

CS6013 - Aug 2021

and the second s

Dependence testing for separable array references

CS6013 - Aug 2021

If the two array references are separable, then dependence exists if

- a = 0 and b1 = b2 or
- $(b1-b2)/a \leq hi_j$

V.Krishna Nandivada (IIT Madras)

Dependence testing for weakly separable array references

- For each subscript position, we have equations of the form: a1 * y + b1 = a2 * x + b2, or a1 * y = a2 * x + (b2 b1)
- Dependence exists if the solution (value of *j*) satisfies inequalities given by the loop bounds of loop *j*.
- List all such constraints for each reference.
- For any given reference if there is only one equation:
 - Say it is given by: $a_1 * y = a_2 * x + (b_2 b_1)$
 - One linear equation, two unknowns: Solution exists iff GCD(a1,a2)%(b2-b1) = 0

9/15

Dependence testing for weakly separable array references (contd)

• If the set of equations has two members of the form

$$a_{11} * y = a21 * x + (b21 - b11)$$

$$a_{12} * y = a22 * x + (b22 - b12)$$

Two equations and two unknowns.

- If a21/a11 = a22/a12 then rational solution exists: iff (b21 b11)/a11 = (b22 b12)/a12.
- If $a21/a11 \neq a22/a12$ then there is one rational solution.

Once we obtain the solutions, check that they are integers and inequalities are satisfied.

● If set of equations have *n* (> 2) members, either *n*−2 are redundant → use previous methods.

Else we have more equations compared to the unknowns \rightarrow overdetermined.

```
V.Krishna Nandivada (IIT Madras)
```

CS6013 - Aug 2021

Closing remarks

Example: analyzing weak separable references

```
for (i=1 .. n) {
    for (j=1 .. m) {
        f[i] = g[2*i][j] + 1.0
        g[i+1][3*j] = h[i][i] - 1.5
        h[i+2][2*i-2] = 1.0/i
    }
}
```

• For g [] : To have dependence:

- For the first subscript: $2 \star x = y + 1$
- For the second subscript: $z = 3 \star w$
- Infinite solutions. Why?

• For h[]: To have dependence:

- for the first subscript: x = y + 2
- For the second subscript: x = 2 * y 2
- Solution: x = 6, y = 4, dependence if $n \ge 6$.

CS6013 - Aug 2021

V.Krishna Nandivada (IIT Madras)

14/15

What did we do today?

• Dependence testing.

13/15