
CS6013 - Modern Compilers: Theory and Practise
Control flow analysis

V. Krishna Nandivada

IIT Madras

*

Control flow analysis

code
object

code
source

IRIR

tokens

syntactic structure

Scanner

Routines
Semantic

Parser

Optimizer Code
Generator

Table

Symbol

Code optimization requires that the compiler has a global
“understanding” of how programs use the available resources.

It has to understand how the control flows (control-flow analysis) in the
program and how the data is manipulated (data-flow analysis)

Control-flow analysis: flow of control within each procedure.

Data-flow analysis: how the data is manipulated in the program.
V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 2 / 1

*

Example

IR for the C code (in a format described in Muchnick book)

receive specifies the reception of a parameter and the
parameter-passing discipline (by-value, by-result, value-result,
reference). Why do we want to have an explicit receive instruction?–
Gives a point of definition for the args.

What is the control structure? Obvious?
V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 3 / 1

*

Example - flow chart and control-flow

The high-level abstractions might be lost in the IR.

Control-flow analysis can expose control structures not obvious in the
high level code. Possible? Loops constructed from if and goto

A basic block is informally a straight-line sequence of code that can be
entered only at the beginning and exited only at the end.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 4 / 1

*

Basic blocks - what do we get?

entry and exit are added for
reasons to be explained later.
We can identify loops by using
dominators

a node A in the flowgraph dominates
a node B if every path from entry
node to B includes A.
This relations is antisymmetric,
reflexive, and transitive.

back edge: An edge in the flow graph,
whose head dominates its tail
(example - edge from B6 to B4.
A loop consists of subset of nodes
dominated by its entry node (head of
the back edge) and having exactly
one back edge in it.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 5 / 1

*

Deep dive - Basic block
Basic block definition

A basic block is a maximal sequence of instructions that can be entered
only at the first of them

The basic block can be exited only from the last of the instructions of the
basic block.

Implication:First instruction can be a) entry point of a routine,b) item
target of a branch, c) item instruction following a branch or a return.

First instruction is called the leader of the BB.

How to construct the basic block?

Identify all the leaders in the program.

For each leader: include in its basic block all the instructions from the
leader to the next leader (next leader not included) or the end of the
routine, in sequence.

What about function calls?

In most cases it is not considered as a branch+return. Why?

Problem with setjmp() and longjmp()? [self-study]
V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 6 / 1

*

CFG - Control flow graph

Definition:
A rooted directed graph G = (N,E), where N is given by the set of
basic blocks + two special BBs: entry and exit.
And edge connects two basic blocks b1 and b2 if control can pass
from b1 to b2.
An edge(s) from entry node to the initial basic block(s?)
From each final basic blocks (with no successors) to exit BB.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 7 / 1

*

CFG continued

successor and predecessor – defined in a natural way.
A basic block is called branch node - if it has more than one
successor.
join node – has more than one predecessor.
For each basic block b:

Succ(b) = {n ∈ N|∃e ∈ E such that e = b → n}
Pred(b) = {n ∈ N|∃e ∈ E such that e = n → b}

A region is a strongly connected subgraph of a flow-graph.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 8 / 1

*

Extended basic block

Extended basic block
a maximal sequence of
instructions beginning with a
leader that contains no join
nodes other than its first node.
Has a single entry, but
possible multiple exit points.
Some optimizations are more
effective on extended basic
blocks.
Why EBBs? Extending “local”
optimizations to EBBs is
straightforward.
How to build an EBB, for a
given basic block?

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 9 / 1

*

Dominators and Postdominators

Goal: To determine loops in the flowgraph.

Dominance relation:
Node d dominates node i (written d dom i), if every possible execution path from
entry to i includes d.
This relations is antisymmetric (a dom b, b dom a ⇒ a = b), reflexive (a dom a),
and transitive (if a dom b and b dom c, then a dom c.
We write dom(a) to denote the dominators of a.

Immediate dominance:
A subrelation of dominance.
For a 6= b, we say a idom b iff a dom b and there does not exist a node c such that
c 6= a and c 6= b, for which a dom c and c dom b.
We write idom(a) to denote the immediate dominator of a – note it is unique.

Strict dominance:
d sdom i, if d dominates i and d 6= i.

Post dominance:
p pdom i, if every possible execution path from i to exit includes p.
Opposite of dominance (i dom p), in the reversed CFG (edges reversed, entry
and exit exchanged).

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 10 / 1

*

Computing all the dominators

* Order makes the difference.

Compute the dominators.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 11 / 1

*

Computing all the immediate dominators

* Order makes the difference.

immediate dominators.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 12 / 1

*

Identifying loops

Back edge: an edge in the flowgraph, whose head dominates its
tail.(Counter example)

Has a loop, but no back edge – hence not a natural loop.
Given a back edge m → n, the natural loop of m → n is

1 the subgraph consisting of the set of nodes containing n and all the
nodes from which m can be reached in the flowgraph without
passing through n, and

2 the edge set connecting all the nodes in its node set.
3 Node n is called the loop header.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 13 / 1

*

Loops (contd.)

preheader: a new (initially empty) block is placed just before the
header of a loop
all the edges that previously went to the header from outside the
loop now go to the preheader, and there is a single new edge from
the preheader to the header.

Adv: helps optimizations that move code from inside a loop to just
before its header – preheader guarantees that such a place is
available – the code will be put in the pre-header

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 14 / 1

*

Algorithm to compute natural loops

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 15 / 1

*

Loops (contd.)

Unless two natural loops have the same header – they are either
disjoint or one is nested inside other.
What about the other way? Given two loops with the same header
– can we guarantees that either a) one is nested inside other, or b)
they constitute the same loop?

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 16 / 1

*

Two natural Loops with same header (contd.)

Can be fixed – disallow if-then-else?
What about loops with multiple entry points?
A loop can be most generally described by a strongly connected
component of a flowgraph.
Self reading – Algorithm to compute SCCs.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 17 / 1

*

Reducibility

“Reducibility” – a property of the flowgraphs.
A reducible transformation is one that collapses subgraphs into
single nodes (and hence “reduces” the graph).
A flow graph is reducible if applying a sequence of such
transformations ultimately reduces it to a single node.
A flow graph G = (N,E) is reducible (or well structured) iff

E can be partitioned into disjoint sets EF – set of forward edges;
and EB – set of backward edges; such that
(N,EF) forms a DAG in which every node can be reached from the
entry node.
EB has all the back edges.

A flowgraph is reducible if all the loops in it are natural loops
(characterized by their back edges) and vice versa.
Implication: A reducible flowgraph has no jumps into the middle of
the loops – makes the analysis easy.
Read yourself – irreducible flow graphs.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 18 / 1

*

Interval analysis

An alternative approach to do control flow analysis.
Overall three steps:

Divide the flowgraph into “regions” of varisous sorts (depending on
the particular approach),
consolidating each region into a new node (called an abstract node
– as it abstracts away what’s inside the node), and
replace “entering” and “leaving” edges.

Resulting graph is called a abstract flowgraph.
The above transformations can be applied in sequence or in
parallel.
Each abstract node corresponds to a subgraph.
The result of applying such transformations on a abstract
flowgraph is also called control tree.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 19 / 1

*

Example T1-T2 analysis

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 20 / 1

*

Control tree

Control tree:
Root of the control tree is an abstract graph representing the
orignal graph.
The leaves are individual basic blocks.
The nodes between the root and the leaves are the abstract
nodes representing regions of the flowgraph.
The edges represent the relationship between each abstract node
and the node regions.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 21 / 1

*

Interval analysis

Interval analysis
Ignores irreducible regions.
Uses maximal intervals: A maximal interval, with a leader h is the
single entry subgraph with entry h, may contain a natural loop and
some acyclic structure dangling from its exits.
minimal interval: A minimal interval is defined to be

1 a natural loop.
2 a maximal acyclic subgraph.
3 a minimal irreducible region.

It is used to identify loops in the flowgraph.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 22 / 1

*

Example: Maximal and minimal intervals

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 23 / 1

*

Steps to perform interval analysis

Perform a postorder traversal of the flowgraph – look for loop
headers, and headers of improper regions.
For each loop header found, construct its natural loop; and then
reduce it (T1).
For each improper region – construct a minimal SCC and reduce.
For the entry node and the immediate descendent of a node in a
natural loop, construct a maximal acyclic graph with that node as
its root; may reduce it (T2) if it has more than one node in it.
Iterate till it terminates.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 24 / 1

*

Example: Interval analysis

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 25 / 1

*

Approaches to Control flow Analysis

Two main approaches to control-flow analysis of single routines.
Both start by determining the basic blocks that make up the
routine.
Construct the control-flowgraph.

First approach:
Use dominators to discover loops; to be used in later
optimizations.
Sufficient for many optimizations (ones that do iterative data-flow
analysis, or ones that work on individual loops only).

Second approach (interval analysis):
Analyzes the overall structure of the routine.
Decomposes the routine into nested regions - called intervals.
The resulting nesting structure is called a control tree.
A sophisticated variety of interval analysis is called structural
analysis.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 26 / 1

*

Structural analysis

A more refined form of interval analysis.
Differs from basic interval analysis in that it identifies many types
of control structures than just loops.
Each such structure is turned into a region and provides a basis
for doing efficient data-flow analysis on each of the different
regions.
Output - a control tree.
Typically larger than that we find for interval analysis.
But the individual regions are simpler and simpler.
Region – has exactly one entry point –
How to include an irreducible or improper region? (coming soon).

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 27 / 1

*

Examples of (Acyclic) regions

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 28 / 1

*

Examples of (Cyclic) regions

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 29 / 1

*

Beyond the discussed regions

The patterns for the control-flow constructs are determined by the
syntax and semantics of the language.
The presented patterns are schematic in nature.

For example - switch case may or not have a free fall to the next
branch.
“natural loop” talks about loops that neither a self or a while loop.

Will the presented patterns cover all types of intervals seen in
practise?
Another type of pattern is called a proper interval – an arbitrary
acyclic structure; contains no cycles and cannot be reduced to
any of the simple acyclic cases.

Example:
V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 30 / 1

*

Structural analysis - computation

Process is similar to that of interval analysis – except that there
are more patterns.

Example:

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 31 / 1

*

Structural analysis - algorithm

Construct a depth-first spanning tree for the flowgraph.
Examine the flowgraphs’s nodes in postrder, for instances of the
various regions.

Form abstract nodes for each region.
Collapse the connecting edges.

Build the control tree in the proces.

Self reading: how to identify these intervals?

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 32 / 1

*

Example - structural analysis

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 33 / 1

*

How to detect Improper regions

Add the lowest common dominator (ncd) of the set of entry points
(I) for the multiple-entry cycle.
Find a node that is reachable from ncd. Say n.
If there exists a path from n to any element of I – add n.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 34 / 1

*

Improper regions and Importance of order

1 interval = (improper) {B1, B2, B3, B4, B5} {B6}
2 Say, we choose B3 before B2: a) {B1, B3, B4}, {B2, B5};

Otherwise, b) {B1, B2, B3, B4, B5}
V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 35 / 1

*

Who uses what?

We studied two techniques: dominators based and interval analysis
based. Which is used in practise?

Most optimizing compilers dominators and iterative data flow
analysis – its easy/quick to write.

But
The interval-based approaches are faster.
The interval-based approaches help easy update of computed
data (don’t need to recompute from scratch).

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 36 / 1

*

Uses of Structural analysis

Structural control flow analysis to the aid of Constant propagation.
Control flow optimizations

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 37 / 1

*

Control flow optimization

Goal: produce longer basic blocks. What is it good for?
Can help increase instruction-level parallelism.

Reduce code size.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 38 / 1

*

Unreachable code elimination

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 39 / 1

*

Straightening

Fuses basic blocks if the predecessor has only one successor and
the successor has only one predecessor.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 40 / 1

*

If simplification

Simplify if conditions:
Say the then part is empty – reverse the condition.
If both then and else are empty – remove both and keep the
condition. Why?
’Predicate’ evaluates to a constant – throw away then or else
part. What about the predicate evaluation?
Nested if-then-else statements where the outer predicate ⇒ inner
predicate.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 41 / 1

*

Loop Inversion

Transforming a while loop to a do-while or repeat-until
loop.
Adv:

Only one jump to end the loop.
Gives a guarantee that the loop will be executed for sure.
x = 3;
while (cond) {

S1;
x = 4;

}
// Q: Is x a constant here?

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 42 / 1

*

Examples - loop inversion

Where the loop condition is known to hold for the first iteration.
Where the loop condition is not guaranteed to hold for the first
iteration.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 43 / 1

*

Closing remarks

What have we done?
Control flow analysis (identifying loops and interval analysis).
Control flow optimizations.

To read
Muchnick - Ch 7, (parts of) Ch 18.

Next:
Data flow analysis

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 44 / 1

