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Opening remarks

What have we done so far?
Compiler overview.
Scanning and parsing.

Announcement:
Assignment 1. Due?

Today:
Semantic Analysis
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Semantic Processing

The compilation process is driven by the syntactic structure of the
program as discovered by the parser
Semantic routines:

interpret meaning of the program based on its syntactic structure
two purposes:

finish analysis by deriving context-sensitive information (e.g. type
checking)
begin synthesis by generating the IR or target code

associated with individual productions of a context free grammar
or subtrees of a syntax tree
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Alternatives for semantic processing

one-pass analysis and synthesis
one-pass compiler plus peephole
one-pass analysis & IR synthesis + code generation pass
multipass analysis (e.g. gcc)
multipass synthesis (e.g. gcc)
language-independent and retargetable (e.g. gcc) compilers

Our focus in the assignments: One-pass analysis & IR synthesis +
multipass analysis + multipass synthesis.
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Type checking

We need generate type information.
For fields, variables, expressions, functions.

Need to enforce types:
Assignments, function calls, expressions.

We need to remember the type information and recall them
as/where required – symbol table.
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Symbol tables

For compile-time efficiency, compilers use a symbol table:
associates lexical names (symbols) with their attributes

What items should be entered?
variable names
defined constants
procedure and function names
literal constants and strings
source text labels
compiler-generated temporaries (we’ll get there)

A symbol table is a compile-time structure
Separate table for structure layouts (types) (includes field offsets and lengths)
May need to preserve list of locals for the debugger
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Symbol table information

What kind of information might the compiler need?
textual name
data type
dimension information (for aggregates)
declaring procedure
lexical level of declaration
storage class (base address)
offset in storage
if record, pointer to structure table
if parameter, by-reference or by-value?
can it be aliased? to what other names?
number and type of arguments to functions
. . .

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 8 / 53



*

Storage classes of variables

During code generation, each variable is assigned an address
(addressing method), approrpriate to its storage class.

A local variable is not assigned a fixed machine address (or
relative to the base of a module) – rather a stack location that is
accessed by an offest from a register whose value does not point
to the same location, each time the procedure is invoked. Why is it
interesting?
Four major storage classes: global, stack, stack static, registers
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Symbol table organization

How should the table be organized?
Linear List

O(n) probes per lookup
easy to expand — no fixed size
one allocation per insertion

Ordered Linear List
O(log2 n) probes per lookup using binary search
insertion is expensive (to reorganize list)

Binary Tree
O(n) probes per lookup — unbalanced
O(log2 n) probes per lookup — balanced
easy to expand — no fixed size
one allocation per insertion

Hash Table
O(1) probes per lookup — on average
expansion costs vary with specific scheme
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Nested scopes: block-structured symbol tables

What information is needed?
when asking about a name, want most recent declaration
declaration may be from current scope or outer scope
innermost scope overrides outer scope declarations

Key point: new declarations occur only in current scope
What operations do we need?

void put (Symbol key, Object value)
bind key to value
Object get(Symbol key)
return value bound to key
void beginScope()
remember current state of table
void endScope()
close current scope and restore table to state at most recent open
beginScope
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Nested scopes: complications

Fields and records:
give each record type its own symbol table

or assign record numbers to qualify field names in table
with R do 〈stmt〉:

all IDs in 〈stmt〉 are treated first as R.id
separate record tables:
chain R’s scope ahead of outer scopes
record numbers:

open new scope, copy entries with R’s record number
or chain record numbers: search using these first
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Nested scopes: complications (cont.)

Implicit declarations:
labels:
declare and define name (in Pascal accessible only within
enclosing scope)
Ada/Modula-3/Tiger FOR loop:
loop index has type of range specifier

Overloading:
link alternatives (check no clashes), choose based on context

Forward references:
bind symbol only after all possible definitions⇒ multiple passes

Other complications:
packages, modules, interfaces — IMPORT, EXPORT
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Attribute information

Attributes are internal representation of declarations
Symbol table associates names with attributes
Names may have different attributes depending on their meaning:

variables: type, procedure level, frame offset
types: type descriptor, data size/alignment
constants: type, value
procedures: formals (names/types), result type, block information
(local decls.), frame size
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Type expressions

Type expressions are a textual representation for types:
1 basic types: boolean, char, integer, real, etc.
2 type names
3 constructed types (constructors applied to type expressions):

1 array(I,T) denotes an array of T indexed over I
e.g., array(1 . . .10, integer)

2 products: T1×T2 denotes Cartesian product of type expressions T1
and T2

3 records: fields have names
e.g., record((a× integer),(b× real))

4 pointers: pointer(T) denotes the type “pointer to an object of type T”
5 functions: D→ R denotes the type of a function mapping domain

type D to range type R
e.g., integer× integer→ integer
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Type descriptors

Type descriptors are compile-time structures representing type
expressions
e.g., char× char→ pointer(integer)!�
char char

pointer

integer

or

!�
char

pointer

integer
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Type compatibility

Type checking needs to determine type equivalence
Two approaches:

Name equivalence: each type name is a distinct type
Structural equivalence: two types are equivalent iff. they
have the same structure (after substituting type
expressions for type names)

s≡ t iff. s and t are the same basic types
array(s1,s2)≡ array(t1, t2) iff. s1 ≡ t1 and s2 ≡ t2
s1× s2 ≡ t1× t2 iff. s1 ≡ t1 and s2 ≡ t2
pointer(s)≡ pointer(t) iff. s≡ t
s1→ s2 ≡ t1→ t2 iff. s1 ≡ t1 and s2 ≡ t2
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Type compatibility: example

Consider:
type link = ↑cell;
var next : link;

last : link;
p : ↑cell;
q, r : ↑cell;

Under name equivalence:
next and last have the same type
p, q and r have the same type
p and next have different type

Under structural equivalence all variables have the same type
Ada/Pascal/Modula-2/Tiger are somewhat confusing: they treat distinct
type definitions as distinct types, so p has different type from q and r
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Type compatibility: Pascal name equivalence

Build compile-time structure called a type graph:
each constructor or basic type creates a node
each name creates a leaf (associated with the type’s descriptor)next lastlink = pointer cellpointer

p
pointer

q r
Type expressions are equivalent if they are represented by the same
node in the graph
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Type compatibility: recursive types

Consider:
type link = ↑cell;

cell = record
info : integer;
next : link;
end;

We may want to eliminate the names from the type graph
Eliminating name link from type graph for record:

record=cell ��info integer

�next pointercell
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Type compatibility: recursive types

Allowing cycles in the type graph eliminates cell:

record=cell ��info integer

�next pointer
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Food for thought - fun assignment

Write a Type Checker for BuritoJava expressions.

Considerations:
Overloaded addition operation.
Assignment op.
Function calls.
Inheritance.
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Intermediate representations

Why use an intermediate representation?
1 break the compiler into manageable pieces

– good software engineering technique
2 simplifies retargeting to new host

– isolates back end from front end
3 simplifies handling of “poly-architecture” problem

– m lang’s, n targets⇒ m+n components (myth)
4 enables machine-independent optimization

– general techniques, multiple passes
An intermediate representation is a compile-time data structure
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Intermediate representations

front back
end end

source
code code

machineoptimizer
IR IR

Generally speaking:
front end produces IR
optimizer transforms that representation into an equivalent
program that may run more efficiently
back end transforms IR into native code for the target machine
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Intermediate representations

Representations talked about in the literature include:
abstract syntax trees (AST)
linear (operator) form of tree
directed acyclic graphs (DAG)
control flow graphs
program dependence graphs
static single assignment form
3-address code
hybrid combinations
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Intermediate representations - properties

Important IR Properties
ease of generation
ease of manipulation
cost of manipulation
level of abstraction
freedom of expression
size of typical procedure

Subtle design decisions in the IR have far reaching effects on the
speed and effectiveness of the compiler.
Level of exposed detail is a crucial consideration.
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IR design issues

Is the chosen IR appropriate for the (analysis/ optimization/
transformation) passes under consideration?
What is the IR level: close to language/machine.
Multiple IRs in a compiler: for example, High, Medium and Low

x = a[i,j+2]

// int a[][20];

t1 = j + 2
t2 = i * 20
t3 = t1 + t2
t4 = 4 * t3
t5 = addr a
t6 = t5 + t4
x = *t6

r1 = [fp-4] // j
r2 = r1 + 2
r3 = [fp-8] // i
r4 = r3 * 20
r5 = r4 + r2
r6 = 4 * r5
r7 = fp - 216 // a
f1 = [r7+r6]

In reality, the variables etc are also only pointers to other data
structures.
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Intermediate representations

Broadly speaking, IRs fall into three categories:
Structural

structural IRs are graphically oriented
examples include trees, DAGs
heavily used in source to source translators
nodes, edges tend to be large

Linear
pseudo-code for some abstract machine
large variation in level of abstraction
simple, compact data structures
easier to rearrange

Hybrids
combination of graphs and linear code
attempt to take best of each
e.g., control-flow graphs
Example: GCC Tree IR.
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Abstract syntax tree

An abstract syntax tree (AST) is the procedure’s parse tree with the
nodes for most non-terminal symbols removed.�hid:xi �hnum:2i hid:yi
This represents “x − 2 ∗ y”.
For ease of manipulation, can use a linearized (operator) form of the
tree.
e.g., in postfix form: x 2 y ∗ −
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Directed acyclic graph

A directed acyclic graph (DAG) is an AST with a unique node for each
value.

x := 2 ∗ y + sin(2∗x)
z := x / 2

:=
hid:xi +

� sin

hid:yi
hnum:2i

�
hid:xi

:=
hid: zi =

Q: What to do for matching names present across different functions?
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Control flow graph

The control flow graph (CFG) models the transfers of control in the
procedure

nodes in the graph are basic blocks
straight-line blocks of code
edges in the graph represent control flow
loops, if-then-else, case, goto

if (x=y) then
s1

else
s2

s3

x=y?

s2s1

s3

falsetrue
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3-address code

At most one operator on the right side of an instruction.
3-address code can mean a variety of representations.
In general, it allow statements of the form:
x ← y op z

with a single operator and, at most, three names.
Simpler form of expression:
x - 2 * y

becomes
t1 ← 2 * y
t2 ← x - t1

Advantages
compact form (direct naming)
names for intermediate values

Can include forms of prefix or postfix code
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3-address code: Addresses

Three-address code is built from two concepts: addresses and
instructions.

An address can be
A name: source variable program name or pointer to the Symbol
Table name.
A constant: Constants in the program.
Compiler generated temporary:
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3-address code

Typical instructions types include:

1 assignments x ← y op z

2 assignments x ← op y

3 assignments x ← y[i] (optional,
why?)

4 assignments x ← y

5 branches goto L

6 conditional branches
if x goto L

7 procedure calls
param x1, param x2, . . .param xn

and
call p, n

8 address and pointer assignments: x
= *y, *x = y.

How to translate:

if (x < y) S1 else
S2

?
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3-address code - implementation

Quadruples
Has four fields: op, arg1, arg2 and result.
Some instructions (e.g. unary minus) do not use arg2.
For copy statement : the operator itself is =; for others it is implied.
Instructions like param don’t use neither arg2 nor result.
Jumps put the target label in result.

x - 2 * y

op result arg1 arg2
(1) load t1 y
(2) loadi t2 2
(3) mult t3 t2 t1
(4) load t4 x
(5) sub t5 t4 t3

simple record structure with four fields
easy to reorder
explicit names
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3-address code - implementation

Triples
x - 2 * y

(1) load y
(2) loadi 2
(3) mult (1) (2)
(4) load x
(5) sub (4) (3)

use table index as implicit name
require only three fields in record
harder to reorder
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3-address code - implementation

Indirect Triples
x - 2 * y

exec-order stmt op arg1 arg2
(1) (100) (100) load y
(2) (101) (101) loadi 2
(3) (102) (102) mult (100) (101)
(4) (103) (103) load x
(5) (104) (104) sub (103) (102)

simplifies moving statements (change the execution order)
more space than triples
implicit name space management
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Indirect triples advantage

for i:=1 to 10 do
begin
a=b*c
d=i*3
end

(a)

Optimized version

a=b*c
for i:=1 to 10 do
begin
d=i*3
end

(b)

(1) := 1 i
(2) * b c
(3) := (2) a
(4) * 3 i
(5) := (4) d
(6) + l i
(7) LE I 10
(8) IFT go (2)

Execution Order (a) : 12345678
Execution Order (b) : 23145678
Note: No need to change the
operands.
Labels still need changing.
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Other hybrids

An attempt to get the best of both worlds.
graphs where they work
linear codes where it pays off

Unfortunately, there appears to be little agreement about where to use
each kind of IR to best advantage.
For example:

PCC and FORTRAN 77 directly emit assembly code for control flow,
but build and pass around expression trees for expressions.
Many people have tried using a control flow graph with low-level,
three address code for each basic block.
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Intermediate representations

But, this isn’t the whole story
Symbol table:

identifiers, procedures
size, type, location
lexical nesting depth

Constant table:
representation, type
storage class, offset(s)

Storage map:
storage layout
overlap information
(virtual) register assignments
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Advice

Many kinds of IR are used in practice.
There is no widespread agreement on this subject.
A compiler may need several different IRs
Choose IR with right level of detail
Keep manipulation costs in mind
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Gap between HLL and IR

Gap between HLL and IR
High level languages may allow complexities that are not allowed
in IR (such as expressions with multiple operators).
High level languages have many syntactic constructs, not present
in the IR (such as if-then-else or loops)

Challenges in translation:
Deep nesting of constructs.
Recursive grammars.
We need a systematic approach to IR generation.

Goal:
A HLL to IR translator.
Input: A program in HLL.
Output: A program in IR (may be an AST or program text)
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Translating expressions

S -> id = E;

E -> E1 + E2

| - E1

| (E1)

| id

{gen(top.get(id.lexeme) ’=’ E.addr);}

{E.addr = new Temp();
gen(E.addr ’=’ E1.addr ’+’ E2.addr);}

{E.addr = new Temp();
gen(E.addr ’=’ - E2.addr);}

{E.addr = E1.addr;}

{E.addr = top.get(id.lexeme);}

Builds the three-address code for an assignment statement.

addr is an synthetic-attribute of E.
denotes the address that will hold the value of E.

Constructs a three-address instruction and appends the instruction to
the sequence of instructions.

top is the top-most (current) symbol table.
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Array elements dereference (Recall)

Elements are typically stored in a block of consecutive locations.
If the width of each array element is w, then the ith element of
array A (say, starting at the address base), begins at the location:
base+ i×w.
For multi-dimensions, beginning address of A[i1][i2] is calculated
by the formula:
base+ i1×w1 + i2×w2
where, w1 is the width of the row, and w2 is the width of one
element.
We declare arrays by the number of elements (nj is the size of the
jth dimension) and the width of each element in an array is fixed
(say w).
The location for A[i1][i2] is given by
base+ i1×n2×w+ i2×w
Q: If the array index does not start at ’0’, then ?
Q: What if the data is stored in column-major form?
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Translation of Array references

Extending the expression grammar with arrays:

S -> id = E;

| L = E;

E -> E1 + E2

| id

| L

L -> id [E]

| L1 [E]
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Translation of Array references (contd)

S -> id = E;

| L = E;

E -> E1 + E2

| id

| L

{gen(top.get(id.lexeme) ’=’ E.addr)}

{gen(L.array.base’[’L.addr’]’ ’=’ E.addr);}

{E.addr = new Temp();
gen(E.addr ’=’ E1.addr ’+’ E2.addr);}

{E.addr = top.get(id.lexeme);}

{E.addr = new Temp();
gen(E.addr ’=’ L.array.base’[’L.addr’]’);}

Nonterminal L has three synthesized attributes
1 L.addr denotes a temporary that is used while computing the offset

for the array reference.
2 L.array is a pointer to the ST entry for the array name. The field base

gives the actual l-value of the array reference.
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Translation of Array references (contd)

L -> Id [E]

| L1 [E]

{L.array = top.get(id.lexeme);
L.type = L.array.type.elem;
L.addr = new Temp();
gen(L.addr ’=’ E.addr’*’L.type.width);}

{L.array = L1.array;
L.type = L1.type.elem;
t = new Temp();
L.addr = new Temp();
gen(t ’=’ E.addr ’*’ L.type.width);
gen (L.addr ’=’ L1.addr ’+’ t);}

3 L.type is the type of the subarray generated by L.
For any type t: t.width gives get the width of the type.
For any type t: t.elem gives the element type.
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Translation of Array references (contd)

Example:
Let a denotes a 2×3 integer array.
Type of a is given by array(2,array(3, integer))
Width of a = 24 (size of integer = 4).
Type of a[i] is array(3, integer), width = 12.
Type of a[i][j] = integer

Exercise:
Write three adddress code for c+a[i][j]

t1 = i * 12
t2 = j * 4
t3 = t1 + t2
t4 = a [t3]
t5 = c + t4

Q: What if we did not know the size of integer (machine dependent)?
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IR generation for flow-of-control statements

P->S

S->assgin

S->if (B) S1

S->if (B) S1
else S2

S.next = new Label();
P.code = S.code || label(S.next)

S.code = assign.code

B.true = new Label();
B.false = S1.next = S.next
S.code = B.code || label(B.true) || S1.code

B.true = new Label();
B.false = new Label();
S1.next = S2.next = S.next
S.code = B.code || label(B.true) || S1.code

|| gen (’goto’ S.next)
|| label (B.false) || S2.code

code is an synthetic attribute: giving the code for that node.
Assume: gen only creates an instruction.
|| concatenates the code.
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IR generation for flow-of-control statements

S->while(B)S1

S->S1 S2

begin = new Label();
B.true = new Label();
B.false = S.next
S1.next = begin
S.code = label(begin) || B.code

|| label(B.true) || S1.code
|| gen(’goto’ begin)

S1.next = new Label()
S2.next = S.next
S.code = S1.code || label(S1.next) || S2.code

code is an synthetic attribute: giving the code for that node.
Assume: gen only creates an instruction.
|| concatenates the code.
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IR generation for boolean expressions
B -> B1 || B2

B -> B1 && B2

B -> !B1

B -> E1 rel E2

B -> true

B -> false

B1.true = B.true
B1.false = new Label()
B2.true = B. true
B2.false = B.false
B.code = B1.code || label(B1.false) || B2.code

B1.true = new Label()
B1.false = B.false
B2.true = B. true
B2.false = B.false
B.code = B1.code || label(B1.true) || B2.code

B1.true = B.false
B1.false = B.true
B.code = B1.code

t = new Temp()
B.code=E1.code||E2.code||gen(t’=’E1.addr rel.op E2.addr)

|| gen(’if’ t ’goto’ B.true)
|| gen(’goto’ B.false);

B.code = gen(’goto’ B.true)

B.code = gen(’goto’ B.false)
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Some challenges/questions

Avoiding redundant gotos. ??
Multiple passes. ??
How to translate implicit branches: break and continue?
How to translate switch statements efficiently?
How to translate procedure code?
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Closing remarks

What have we done today?
Intermediate Code Generation.

To read
Dragon Book. Sections 6.4, 6.5, 6.6, 6.7, 6.8, 6.9 and 2.8
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