Opening remarks

CS6013 - Modern Compilers: Theory and Practise What have we done so far?
Semantic Analysis @ Compiler overview.
@ Scanning and parsing.
V. Krishna Nandivada Announcement:
@ Assignment 1. Due?
IIT Madras Today:

@ Semantic Analysis

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 2/53

Acknowledgement Semantic Processing

The compilation process is driven by the syntactic structure of the
program as discovered by the parser
Semantic routines:
@ interpret meaning of the program based on its syntactic structure
@ two purposes:
e finish analysis by deriving context-sensitive information (e.g. type

checking)
Copyright ©2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or (4] begin synthesis by generating the IR or target code
classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to @ associated with individual prOd uctions of a context free grammar

lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

or subtrees of a syntax tree

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 3/53 V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 4/53

Alternatives for semantic processing Type checking

@ one-pass analysis and synthesis
@ one-pass compiler plus peephole
@ one-pass analysis & IR synthesis + code generation pass o We need. genera’Fe type mformgtlon. .
o multipass analysis (e.g. gce) e For fields, variables, expressions, functions.
o muli svnthesis (e o) @ Need to enforce types:

ultipass _ y _ 9-9 e Assignments, function calls, expressions.
@ language-independent and retargetable (e.g. gcc) compilers

@ We need to remember the type information and recall them
as/where required — symbol table.

Our focus in the assignments: One-pass analysis & IR synthesis +
multipass analysis + multipass synthesis.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 5/53 V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 6/53

Symbol tables Symbol table information

What kind of information might the compiler need?

For compile-time efficiency, compilers use a symbol table:
@ textual name

@ associates lexical names (symbols) with their attributes

. @ data type
What items should be entered? . yP . .
) @ dimension information for aggregates
@ variable names)
@ declaring procedure

@ defined constants

@ procedure and function names

@ literal constants and strings

@ source text labels

@ compiler-generated temporaries (we'll get there)

lexical level of declaration

storage class (base address)
offset in storage

if record, pointer to structure table

if parameter, by-reference or by-value?

can it be aliased? to what other names?

number and type of arguments to functions

A symbol table is a compile-time structure
Separate table for structure layouts (types) (includes field offsets and lengths)
May need to preserve list of locals for the debugger

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 7153 V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 8/53

Storage classes of variables Symbol table organization

How should the table be organized?

@ Linear List
e O(n) probes per lookup
During code generation, each variable is assigned an address e easy to expand — no fixed size
(addressing method), approrpriate to its storage class. o one allocation per insertion
@ Alocal variable is not assigned a fixed machine address (or @ Ordered Linear List
relative to the base of a module) — rather a stack location that is @ O(log,n) probes per lookup using binary search
accessed by an offest from a register whose value does not point o insertion is expensive (to reorganize ist)
to the same location, each time the procedure is invoked. Why is it @ Binary Tree
interesting? e O(n) probes per lookup — unbalanced

e O(log,n) probes per lookup — balanced
e easy to expand — no fixed size
e one allocation per insertion

@ Hash Table

@ O(1) probes per lookup — on average
@ expansion costs vary with specific scheme

@ Four major storage classes: global, stack, stack static, registers

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 9/53 V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 10/53

Nested scopes: block-structured symbol tables Nested scopes: complications

What information is needed?
@ when asking about a name, want most recent declaration
@ declaration may be from current scope or outer scope
@ innermost scope overrides outer scope declarations

Key point: new declarations occur only in current scope
What operations do we need?

Fields and records:
give each record type its own symbol table
or assign record numbers to qualify field names in table
with R do (stmt):
@ all IDs in (stmt) are treated first as R.id

@ separate record tables:
chain R’s scope ahead of outer scopes
@ record numbers:

open new scope, copy entries with R’s record number

@ void beginScope () or chain record numbers: search using these first
remember current state of table

@ void put (Symbol key, Object value)
bind key to value

@ Object get (Symbol key)
return value bound to key

@ void endScope ()
close current scope and restore table to state at most recent op
beginScope i

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 11 /53 V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 12/53

Nested scopes: complications (cont.)

Implicit declarations:

@ labels:
declare and define name (in Pascal accessible only within
enclosing scope)

@ Ada/Modula-3/Tiger FOR loop:
loop index has type of range specifier

Overloading:
@ link alternatives (check no clashes), choose based on context
Forward references:
@ bind symbol only after all possible definitions = multiple passes
Other complications:
packages, modules, interfaces — IMPORT, EXPORT

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 13/53

Type expressions

Type expressions are a textual representation for types:
@ basic types: boolean, char, integer, real, etc.
© type names

© constructed types (constructors applied to type expressions):
@ array(I,T) denotes an array of 7 indexed over /
e.g., array(1...10,integer)
@ products: Ty x T, denotes Cartesian product of type expressions T
and T»
© records: fields have names
e.g., record((a x integer), (b X real))
@ pointers: pointer(T) denotes the type “pointer to an object of type T”
@ functions: D — R denotes the type of a function mapping domain
type D to range type R
e.g., integer X integer — integer

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 15/583

Attribute information

Attributes are internal representation of declarations
Symbol table associates names with attributes
Names may have different attributes depending on their meaning:

@ variables: type, procedure level, frame offset
@ types: type descriptor, data size/alignment
@ constants: type, value

@ procedures: formals (names/types), result type, block information
(local decls.), frame size

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 14/53

Type descriptors

Type descriptors are compile-time structures representing type
expressions
e.g., char x char — pointer(integer)

NN

X pointer or pointer
char char integer () l

char integer

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 16 /53

Type compatibility Type compatibility: example

Type checking needs to determine type equivalence Consider:

type link = Tcell;
Two approaches: var next : link;
Name equivalence: each type name is a distinct type last link;)
Structural equivalence: two types are equivalent iff. they g, r . %ii
have the same structure (after substituting type Under name equivalence:
expressions for type names) @ next and last have the same type
@ s=riff. s and ¢ are the same basic types @ p, gand r have the same type

@ array(sy,s2) = array(t, 1) iff. sy =t and s, =1,
@ sixsm=nxnpiff.si=rand s, =1

@ pointer(s) = pointer(t) iff. s=1¢

@51 —osm=h—biff.sj=nands, =10

@ p and next have different type
Under structural equivalence all variables have the same type
Ada/Pascal/Modula-2/Tiger are somewhat confusing: they treat distinct
type definitions as distinct types, so p has different type from g and r

V.Krishna Nandivada (lIT Madras) CS6013 - Jan 2020 17 /53 V.Krishna Nandivada (lIT Madras) CS6013 - Jan 2020 18/53
Type compatibility: Pascal name equivalence Type compatibility: recursive types
Build compile-time structure called a type graph: Consider:
. type link = Tcell;
@ each constructor or basic type creates a node cell = record
@ each name creates a leaf (associated with the type’s descriptor) info : integer;
next : link;
next last T end;
N ; I,) d ; We may want to eliminate the names from the type graph
N)/ ! \)/ Eliminating name 11ink from type graph for record:
‘_ ’ . * ‘ ’ cell =record
link = pointer pointer pointer |
X
X X
cell PN PN
info integer next pointer
Type expressions are equivalent if they are represented by the same |

node in the graph cell

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 19/53 V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 20/53

Type compatibility: recursive types Food for thought - fun assignment

Allowing cycles in the type graph eliminates ce11: ' _ _
Write a Type Checker for BuritoJava expressions.
cell =record

Y
X
/ \ Considerations:

@ Overloaded addition operation.

X X
/ \ / \ @ Assignment op.

info integer next pointer .
8 p @ Function calls.

@ Inheritance.

V.Krishna Nandivada (lIT Madras) CS6013 - Jan 2020 21/58 V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 22/53

Intermediate representations Intermediate representations

Why use an intermediate representation?

@ break the compiler into manageable pieces L J i
— good software engineering technique source__| front optimizer back | —~machine

coae en IR IR en coae
@ simplifies retargeting to new host
— isolates back end from front end

© simplifies handling of “poly-architecture” problem
—m lang’s, n targets = m+n components myth

© enables machine-independent optimization
— general techniques, multiple passes

An intermediate representation is a compile-time data structure

Generally speaking:
@ front end produces IR

@ optimizer transforms that representation into an equivalent
program that may run more efficiently

@ back end transforms IR into native code for the target machine

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 23/53 V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 24 /53

Intermediate representations Intermediate representations - properties

Representations talked about in the literature include: Important IR Properties
@ abstract syntax trees (AST) @ ease of generation

@ linear (operator) form of tree @ ease of manipulation

@ directed acyclic graphs (DAG) @ cost of manipulation

@ control flow graphs @ level of abstraction

@ program dependence graphs @ freedom of expression

@ static single assignment form @ size of typical procedure

@ 3-address code Subtle design decisions in the IR have far reaching effects on the

speed and effectiveness of the compiler.

@ hybrid combinations
y Level of exposed detail is a crucial consideration.

V.Krishna Nandivada (lIT Madras) CS6013 - Jan 2020 25/53 V.Krishna Nandivada (lIT Madras) CS6013 - Jan 2020 26/53

IR design issues Intermediate representations

Broadly speaking, IRs fall into three categories:
@ Structural
e structural IRs are graphically oriented

@ Is the chosen IR appropriate for the (analysis/ optimization/
transformation) passes under consideration?

@ What is the IR level: close to language/machine. e examples include trees, DAGs
@ Multiple IRs in a compiler: for example, High, Medium and Low o heavily used in source to source translators
oo tl = 3 + 2 rl = [fp-4] // 3 @ nodes, edges tend to be large
x = ali,g+2] t2 = 1 % 20 r2 = rl + 2 @ Linear
t3 = tl + t2 r3 = [fp-8] // i e pseudo-code for some abstract machine
, td = 4 % t3 rd = r3 x 20 e large variation in level of abstraction
// int alll20]; o _ 4y 2 5 = rd 4 1o o simple, compact data structures
6 = t5 + t4 6 = 4 % 15 e easier to rearrange
X = *t6 r7 = fp - 216 // a © Hybrids
f1 = [r7+r6] e combination of graphs and linear code

e attempt to take best of each
e e.g., control-flow graphs
o Example: GCC Tree IR.

@ In reality, the variables etc are also only pointers to other data
structures.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 27 /53 V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 28/53

Abstract syntax tree

An abstract syntax tree (AST) is the procedure’s parse tree with the
nodes for most non-terminal symbols removed.
(id:x) *
()

N

num:2 (id:y)

This represents “x — 2 * y”.

For ease of manipulation, can use a linearized (operator) form of the
tree.

e.g., in postfix form: x 2 y *x —

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 29 /53

Control flow graph

The control flow graph (CFG) models the transfers of control in the
procedure

@ nodes in the graph are basic blocks
straight-line blocks of code

@ edges in the graph represent control flow
loops, if-then-else, case, goto

if (x=y) then
sl

else
s2

s3

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 31/53

Directed acyclic graph

A directed acyclic graph (DAG) is an AST with a unique node for each
value.

/ /
(id: z) x
y 4+ sin (2%x)
2

(id:x)

(num:2)

Q: What to do for matching names present across different function$

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 30/53

3-address code

@ At most one operator on the right side of an instruction.
@ 3-address code can mean a variety of representations.

@ In general, it allow statements of the form:

X < Yy Op Z
with a single operator and, at most, three names.
Simpler form of expression:

X = 2 %y
becomes

tl + 2 %y

t2 — x - tl

Advantages
@ compact form (direct naming)

@ names for intermediate values
Can include forms of prefix or postfix code

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 32/53

3-address code: Addresses

Three-address code is built from two concepts: addresses and
instructions.
@ An address can be
@ A name: source variable program name or pointer to the Symbol
Table name.
o A constant: Constants in the program.
e Compiler generated temporary:

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 33/53
3-address code - implementation
Quadruples

@ Has four fields: op, arg1, arg2 and result.

@ Some instructions (e.g. unary minus) do not use arg2.

@ For copy statement : the operator itself is =; for others it is implied.
@ Instructions like param don’t use neither arg2 nor result.

@ Jumps put the target label in result.

X — 2 %y
op result | arg1 | arg2
load t y

loadi t2 2
mult t3 t2 t1
load t4 X
sub t5 t4 t3

@ simple record structure with four fields
@ easy to reorder

@ explicit names

3
2
3
4
5

~ N~~~
—_— — — ~— ~—

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 35/53

3-address code

Typical instructions types include:

@ assignments x «+ y op z

@ assignments x < op vy

© assignments x « yI[i] (optional,
why?)

©Q assignments x « y

© branches goto L

© conditional branches
if x goto L

@ procedure calls ?
param X, param Xj,...param X
and
call p, n

© address and pointer assignments: x
= *y, *X = V.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 34 /53

How to translate:

if (x < y) S1 else
S2

3-address code - implementation

Triples
X = 2 %y
(1) | load | y
(2) | loadi | 2
(3) | mult | (1) | (2)
(4) | load | x
(5) | sub | (4) | (3)

@ use table index as implicit name
@ require only three fields in record
@ harder to reorder

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 36/53

3-address code - implementation Indirect triples advantage

Indirect Triples for i:=1 to 10 do ,
X — 2 %y begin (1) :=1 1
exec-order stmt [op argl | arg2 a=bxc (? f_b ;
@ | (100) (100) | load | y d=i+3 ‘4) "3‘,) a
@) | (101) (101) | loadi | 2 end ‘5) R
(3) (102) (102) | mult | (100) | (101) (a) 26; :1(1)
| (103) (103) | load | x Optimized version (7) 1E T 10
(5) (104) (104) | sub | (103) | (102) P (8) IFT go (2)
@ simplifies moving statements (change the execution order) a=bx*c .
o St o t0d Seen Okr(): 2
e implicit name space management bzzig Note: No need to change the
operands.
end Labels still need changing.
(b)
V.Krishna Nandivada (lIT Madras) CS6013 - Jan 2020 37/53 V.Krishna Nandivada (lIT Madras) CS6013 - Jan 2020 38/53

Other hybrids Intermediate representations

But, this isn’t the whole story

An attempt to get the best of both worlds. Symbol table:
@ graphs where they work @ identifiers, procedures
@ linear codes where it pays off @ size, type, location
Unfortunately, there appears to be little agreement about where to use @ lexical nesting depth
each kind of IR to best advantage. Constant table:
For example:

@ representation, type

@ storage class, offset(s)
Storage map:

@ storage layout

@ overlap information

@ (virtual) register assignments

@ PCC and FORTRAN 77 directly emit assembly code for control flow,
but build and pass around expression trees for expressions.

@ Many people have tried using a control flow graph with low-level,
three address code for each basic block.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 39/53 V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 40/53

@ Many kinds of IR are used in practice.

@ There is no widespread agreement on this subject.
@ A compiler may need several different IRs

@ Choose IR with right level of detalil

@ Keep manipulation costs in mind

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 41/53

Translating expressions

S —> id = E; {gen (top.get (id.lexeme) ’'=’ E.addr);}

E —> E1 + E2 {E.addr = new Temp();
gen(E.addr "=’ El.addr '+’ EZ2.addr);}

| - E1 {E.addr = new Temp() ;
gen(E.addr "=’ - E2.addr);}

| (E1) {E.addr = El.addr;}

| 1id {E.addr
@ Builds the three-address code for an assignment statement.

@ addr is an synthetic-attribute of E.
@ denotes the address that will hold the value of E.

@ Constructs a three-address instruction and appends the instruction

top.get (id.lexeme) ; }

Gap between HLL and IR

Gap between HLL and IR

@ High level languages may allow complexities that are not allowed
in IR (such as expressions with multiple operators).

@ High level languages have many syntactic constructs, not present
in the IR (such as if-then-else or loops)

Challenges in translation:
@ Deep nesting of constructs.
@ Recursive grammars.
@ We need a systematic approach to IR generation.
Goal:
@ A HLL to IR translator.
@ Input: A program in HLL.
@ Output: A program in IR (may be an AST or program text)

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 42/53

Array elements dereference (Recall)

@ Elements are typically stored in a block of consecutive locations.

@ If the width of each array element is w, then the i”* element of
array A (say, starting at the address base), begins at the location:
base +ix w.

@ For multi-dimensions, beginning address of A[i;][i»] is calculated
by the formula:
base+1iy X w1 +iy X wy
where, w; is the width of the row, and w, is the width of one
element.

@ We declare arrays by the number of elements (n; is the size of the
j™ dimension) and the width of each element in an array is fixed
(say w).

The location for A[i;][i] is given by
base+ i1 Xny Xw—+ir X w
@ Q: If the array index does not start at ’0’, then ?
@ Q: What if the data is stored in column-major form?

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 44 /53

Translation of Array references

@ Extending the expression grammar with arrays:

S —> id = E;

L —> id [E]

| L1 [E]

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 45/53

Translation of Array references (contd)

L —> Id [E] ({L.array = top.get(id.lexeme);
L.type = L.array.type.elem;
L.addr = new Temp () ;
gen(L.addr "=’ E.addr’«’'L.type.width);}

| L1 [E] {L.array = Ll.array;
L.type = Ll.type.elem;
t = new Temp();
L.addr = new Temp () ;
gen(t "=’ E.addr "%’ L.type.width);
gen (L.addr "=’ Ll.addr '+’ t);}

3 L.type is the type of the subarray generated by L.
e For any type ¢: t.widrh gives get the width of the type.
e For any type 1: r.elem gives the element type.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 47 /53

Translation of Array references (contd)

S -> id = E; {gen(top.get (id.lexeme) ’'=’ E.addr)}
| L = E; {gen(L.array.base’[’L.addr’]’ ’'=’" E.addr);}

E —> E1 + E2 {E.addr = new Temp();
gen(E.addr =’ El.addr "+’ E2.addr);}

| id {E.addr = top.get (id.lexeme);}

| L {E.addr = new Temp () ;

gen (E.addr ’'=’ L.a;ray.base’[’L.addr’]’);}
Nonterminal L has three synthesized attributes

1 L.addr denotes a temporary that is used while computing the offset
for the array reference.

2 L.array is a pointer to the ST entry for the array name. The field bq
gives the actual I-value of the array reference. |

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 46 /53

Translation of Array references (contd)

Example:
@ Let a denotes a 2 x 3 integer array.
@ Type of a is given by array(2,array(3, integer))
@ Width of a = 24 (size of integer = 4).
@ Type of ali] is array(3,integer), width = 12.
@ Type of ali][j] = integer
Exercise:
@ Write three adddress code for ¢ + ali][j]

tl =i « 12
t2 = j * 4
t3 = tl + t2
td = a [t3]
ts = c + t4

Q: What if we did not know the size of integer (machine dependent)

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 48 /53

IR generation for flow-of-control statements

P->S S.next = new Label();
P.code = S.code || label (S.next)
S->assgin S.code = assign.code

S->if (B) S1 B.true = new Label();
B.false = Sl.next = S.next
S.code = B.code || label (B.true) || Sl.code

S->if (B) Sl B.true = new Label();

else S2 B.false = new Label();
Sl.next = S2.next = S.next
S.code = B.code || label(B.true) || Sl.code
|| gen ("goto’ S.next)
|| label (B.false) || S2.code

@ code is an synthetic attribute: giving the code for that node.
@ Assume: gen only creates an instruction.
@ || concatenates the code.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 49 /53
IR generation for boolean expressions
B -> Bl || B2 Bl.true = B.true

Bl.false = new Label ()

B2.true = B. true

B2.false = B.false

B.code = Bl.code || label(Bl.false) || B2.code

B -> Bl && B2 Bl.true = new Label (
Bl.false = B.false
B2.true = B. true
B2.false = B.false
B.code = Bl.code || label(Bl.true) || B2.code

B -> IB1 Bl.true = B.false
Bl.false = B.true
B.code = Bl.code

B -> El rel E2 t = new Temp ()
B.code=El.code| |E2.code| |gen(t’="El.addr rel.op E2.addr)
|l gen("if’” t ’"goto’ B.true)
|| gen(’goto’ B.false);

B —-> true B.code = gen(’goto’ B.true)
B -> false B.code = gen(’goto’ B.false)
V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 51/53

IR generation for flow-of-control statements

S->while (B) S1 begin = new Label();

B.true = new Label();
B.false = S.next
Sl.next = begin
S.code = label (begin) || B.code
|| label (B.true) || Sl.code

|| gen(’goto’ begin)

S—->S1 S2 Sl.next = new Label ()
S2.next = S.next
S.code = Sl.code || label(Sl.next) || S2.code

@ code is an synthetic attribute: giving the code for that node.
@ Assume: gen only creates an instruction.
@ || concatenates the code.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 50/53

Some challenges/questions

@ Avoiding redundant gotos. ?7?

@ Multiple passes. ??

@ How to translate implicit branches: break and continue?
@ How to translate switch statements efficiently?

@ How to translate procedure code?

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 52 /53

Closing remarks

What have we done today?
@ Intermediate Code Generation.
To read
@ Dragon Book. Sections 6.4, 6.5, 6.6, 6.7, 6.8, 6.9 and 2.8

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 53/53

