Opening remarks

CS6013 - Modern Compilers: Theory and Practise What have we done so far?
Semantic Analysis @ Compiler overview.
@ Scanning and parsing.
V. Krishna Nandivada Announcement:
@ Assignment 1. Due?
IIT Madras Today:

@ Semantic Analysis
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Acknowledgement Semantic Processing

The compilation process is driven by the syntactic structure of the
program as discovered by the parser
Semantic routines:
@ interpret meaning of the program based on its syntactic structure
@ two purposes:
e finish analysis by deriving context-sensitive information (e.g. type

checking)
Copyright ©2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or (4] begin synthesis by generating the IR or target code
classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that . . . .. .
copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to @ associated with individual prOd uctions of a context free grammar

lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

or subtrees of a syntax tree
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Alternatives for semantic processing Type checking

@ one-pass analysis and synthesis
@ one-pass compiler plus peephole
@ one-pass analysis & IR synthesis + code generation pass o We need. genera’Fe type mformgtlon. .
o multipass analysis (e.g. gce) e For fields, variables, expressions, functions.
o muli svnthesis (e o) @ Need to enforce types:

ultipass _ y _ 9-9 e Assignments, function calls, expressions.
@ language-independent and retargetable (e.g. gcc) compilers

@ We need to remember the type information and recall them
as/where required — symbol table.

Our focus in the assignments: One-pass analysis & IR synthesis +
multipass analysis + multipass synthesis.
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Symbol tables Symbol table information

What kind of information might the compiler need?

For compile-time efficiency, compilers use a symbol table:
@ textual name

@ associates lexical names (symbols) with their attributes

. @ data type
What items should be entered? . yP . .
) @ dimension information for aggregates
@ variable names )
@ declaring procedure

@ defined constants

@ procedure and function names

@ literal constants and strings

@ source text labels

@ compiler-generated temporaries (we'll get there)

lexical level of declaration

storage class (base address)
offset in storage

if record, pointer to structure table

if parameter, by-reference or by-value?

can it be aliased? to what other names?

number and type of arguments to functions

A symbol table is a compile-time structure
Separate table for structure layouts (types) (includes field offsets and lengths)
May need to preserve list of locals for the debugger
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Storage classes of variables Symbol table organization

How should the table be organized?

@ Linear List
e O(n) probes per lookup
During code generation, each variable is assigned an address e easy to expand — no fixed size
(addressing method), approrpriate to its storage class. o one allocation per insertion
@ Alocal variable is not assigned a fixed machine address (or @ Ordered Linear List
relative to the base of a module) — rather a stack location that is @ O(log,n) probes per lookup using binary search
accessed by an offest from a register whose value does not point o insertion is expensive (to reorganize ist)
to the same location, each time the procedure is invoked. Why is it @ Binary Tree
interesting? e O(n) probes per lookup — unbalanced

e O(log,n) probes per lookup — balanced
e easy to expand — no fixed size
e one allocation per insertion

@ Hash Table

@ O(1) probes per lookup — on average
@ expansion costs vary with specific scheme

@ Four major storage classes: global, stack, stack static, registers
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Nested scopes: block-structured symbol tables Nested scopes: complications

What information is needed?
@ when asking about a name, want most recent declaration
@ declaration may be from current scope or outer scope
@ innermost scope overrides outer scope declarations

Key point: new declarations occur only in current scope
What operations do we need?

Fields and records:
give each record type its own symbol table
or assign record numbers to qualify field names in table
with R do (stmt):
@ all IDs in (stmt) are treated first as R.id

@ separate record tables:
chain R’s scope ahead of outer scopes
@ record numbers:

open new scope, copy entries with R’s record number

@ void beginScope () or chain record numbers: search using these first
remember current state of table

@ void put (Symbol key, Object value)
bind key to value

@ Object get (Symbol key)
return value bound to key

@ void endScope ()
close current scope and restore table to state at most recent op
beginScope i
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Nested scopes: complications (cont.)

Implicit declarations:

@ labels:
declare and define name (in Pascal accessible only within
enclosing scope)

@ Ada/Modula-3/Tiger FOR loop:
loop index has type of range specifier

Overloading:
@ link alternatives (check no clashes), choose based on context
Forward references:
@ bind symbol only after all possible definitions = multiple passes
Other complications:
packages, modules, interfaces — IMPORT, EXPORT
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Type expressions

Type expressions are a textual representation for types:
@ basic types: boolean, char, integer, real, etc.
© type names

© constructed types (constructors applied to type expressions):
@ array(I,T) denotes an array of 7 indexed over /
e.g., array(1...10,integer)
@ products: Ty x T, denotes Cartesian product of type expressions T
and T»
© records: fields have names
e.g., record((a x integer), (b X real))
@ pointers: pointer(T) denotes the type “pointer to an object of type T”
@ functions: D — R denotes the type of a function mapping domain
type D to range type R
e.g., integer X integer — integer
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Attribute information

Attributes are internal representation of declarations
Symbol table associates names with attributes
Names may have different attributes depending on their meaning:

@ variables: type, procedure level, frame offset
@ types: type descriptor, data size/alignment
@ constants: type, value

@ procedures: formals (names/types), result type, block information
(local decls.), frame size
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Type descriptors

Type descriptors are compile-time structures representing type
expressions
e.g., char x char — pointer(integer)

NN

X pointer or pointer
char char integer ( ) l

char integer
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Type compatibility Type compatibility: example

Type checking needs to determine type equivalence Consider:

type link = Tcell;
Two approaches: var next : link;
Name equivalence: each type name is a distinct type last link; )
Structural equivalence: two types are equivalent iff. they g, r . %ii
have the same structure (after substituting type Under name equivalence:
expressions for type names) @ next and last have the same type
@ s=riff. s and ¢ are the same basic types @ p, gand r have the same type

@ array(sy,s2) = array(t, 1) iff. sy =t and s, =1,
@ sixsm=nxnpiff.si=rand s, =1

@ pointer(s) = pointer(t) iff. s=1¢

@51 —osm=h—biff.sj=nands, =10

@ p and next have different type
Under structural equivalence all variables have the same type
Ada/Pascal/Modula-2/Tiger are somewhat confusing: they treat distinct
type definitions as distinct types, so p has different type from g and r
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Type compatibility: Pascal name equivalence Type compatibility: recursive types
Build compile-time structure called a type graph: Consider:
. type link = Tcell;
@ each constructor or basic type creates a node cell = record
@ each name creates a leaf (associated with the type’s descriptor) info : integer;
next : link;
next last T end;
N ; I,) d ; We may want to eliminate the names from the type graph
N )/ ! \ )/ Eliminating name 11ink from type graph for record:
‘_ ’ . * ‘ ’ cell =record
link = pointer pointer pointer |
X
X X
cell PN PN
info integer next pointer
Type expressions are equivalent if they are represented by the same |

node in the graph cell
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Type compatibility: recursive types Food for thought - fun assignment

Allowing cycles in the type graph eliminates ce11: ' _ _
Write a Type Checker for BuritoJava expressions.
cell =record

Y
X
/ \ Considerations:

@ Overloaded addition operation.

X X
/ \ / \ @ Assignment op.

info integer next pointer .
8 p @ Function calls.

@ Inheritance.
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Intermediate representations Intermediate representations

Why use an intermediate representation?

@ break the compiler into manageable pieces L J i
— good software engineering technique source__|  front optimizer back | —~machine

coae en IR IR en coae
@ simplifies retargeting to new host
— isolates back end from front end

© simplifies handling of “poly-architecture” problem
—m lang’s, n targets = m+n components myth

© enables machine-independent optimization
— general techniques, multiple passes

An intermediate representation is a compile-time data structure

Generally speaking:
@ front end produces IR

@ optimizer transforms that representation into an equivalent
program that may run more efficiently

@ back end transforms IR into native code for the target machine
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Intermediate representations Intermediate representations - properties

Representations talked about in the literature include: Important IR Properties
@ abstract syntax trees (AST) @ ease of generation

@ linear (operator) form of tree @ ease of manipulation

@ directed acyclic graphs (DAG) @ cost of manipulation

@ control flow graphs @ level of abstraction

@ program dependence graphs @ freedom of expression

@ static single assignment form @ size of typical procedure

@ 3-address code Subtle design decisions in the IR have far reaching effects on the

speed and effectiveness of the compiler.

@ hybrid combinations
y Level of exposed detail is a crucial consideration.
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IR design issues Intermediate representations

Broadly speaking, IRs fall into three categories:
@ Structural
e structural IRs are graphically oriented

@ Is the chosen IR appropriate for the (analysis/ optimization/
transformation) passes under consideration?

@ What is the IR level: close to language/machine. e examples include trees, DAGs
@ Multiple IRs in a compiler: for example, High, Medium and Low o heavily used in source to source translators
oo tl = 3 + 2 rl = [fp-4] // 3 @ nodes, edges tend to be large
x = ali,g+2] t2 = 1 % 20 r2 = rl + 2 @ Linear
t3 = tl + t2 r3 = [fp-8] // i e pseudo-code for some abstract machine
, td = 4 % t3 rd = r3 x 20 e large variation in level of abstraction
// int alll20]; o _ 4y 2 5 = rd 4 1o o simple, compact data structures
6 = t5 + t4 6 = 4 % 15 e easier to rearrange
X = *t6 r7 = fp - 216 // a © Hybrids
f1 = [r7+r6] e combination of graphs and linear code

e attempt to take best of each
e e.g., control-flow graphs
o Example: GCC Tree IR.

@ In reality, the variables etc are also only pointers to other data
structures.
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Abstract syntax tree

An abstract syntax tree (AST) is the procedure’s parse tree with the
nodes for most non-terminal symbols removed.
(id:x) *
( )

N

num:2 (id:y)

This represents “x — 2 * y”.

For ease of manipulation, can use a linearized (operator) form of the
tree.

e.g., in postfix form: x 2 y *x —
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Control flow graph

The control flow graph (CFG) models the transfers of control in the
procedure

@ nodes in the graph are basic blocks
straight-line blocks of code

@ edges in the graph represent control flow
loops, if-then-else, case, goto

if (x=y) then
sl

else
s2

s3
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Directed acyclic graph

A directed acyclic graph (DAG) is an AST with a unique node for each
value.

/ /
(id: z) x
y 4+ sin (2%x)
2

(id:x)

(num:2)

Q: What to do for matching names present across different function$
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3-address code

@ At most one operator on the right side of an instruction.
@ 3-address code can mean a variety of representations.

@ In general, it allow statements of the form:

X < Yy Op Z
with a single operator and, at most, three names.
Simpler form of expression:

X = 2 %y
becomes

tl + 2 %y

t2 — x - tl

Advantages
@ compact form (direct naming)

@ names for intermediate values
Can include forms of prefix or postfix code
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3-address code: Addresses

Three-address code is built from two concepts: addresses and
instructions.
@ An address can be
@ A name: source variable program name or pointer to the Symbol
Table name.
o A constant: Constants in the program.
e Compiler generated temporary:
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3-address code - implementation
Quadruples

@ Has four fields: op, arg1, arg2 and result.

@ Some instructions (e.g. unary minus) do not use arg2.

@ For copy statement : the operator itself is =; for others it is implied.
@ Instructions like param don’t use neither arg2 nor result.

@ Jumps put the target label in result.

X — 2 %y
op result | arg1 | arg2
load t y

loadi t2 2
mult t3 t2 t1
load t4 X
sub t5 t4 t3

@ simple record structure with four fields
@ easy to reorder

@ explicit names

3
2
3
4
5

~ N~~~
—_— — — ~— ~—
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3-address code

Typical instructions types include:

@ assignments x «+ y op z

@ assignments x < op vy

© assignments x « yI[i] (optional,
why?)

©Q assignments x « y

© branches goto L

© conditional branches
if x goto L

@ procedure calls ?
param X, param Xj,...param X
and
call p, n

© address and pointer assignments: x
= *y, *X = V.
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How to translate:

if (x < y) S1 else
S2

3-address code - implementation

Triples
X = 2 %y
(1) | load | y
(2) | loadi | 2
(3) | mult | (1) | (2)
(4) | load | x
(5) | sub | (4) | (3)

@ use table index as implicit name
@ require only three fields in record
@ harder to reorder
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3-address code - implementation Indirect triples advantage

Indirect Triples for i:=1 to 10 do ,
X — 2 %y begin (1) :=1 1
exec-order stmt [ op argl | arg2 a=bxc (? f_b ;
@ | (100) (100) | load | y d=i+3 ‘4) "3‘,) a
@) | (101) (101) | loadi | 2 end ‘5) R
(3) (102) (102) | mult | (100) | (101) (a) 26; :1(1)
| (103) (103) | load | x Optimized version (7) 1E T 10
(5) (104) (104) | sub | (103) | (102) P (8) IFT go (2)
@ simplifies moving statements (change the execution order) a=bx*c .
o St o t0d  Seen Okr(): 2
e implicit name space management bzzig Note: No need to change the
operands.
end Labels still need changing.
(b)
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Other hybrids Intermediate representations

But, this isn’t the whole story

An attempt to get the best of both worlds. Symbol table:
@ graphs where they work @ identifiers, procedures
@ linear codes where it pays off @ size, type, location
Unfortunately, there appears to be little agreement about where to use @ lexical nesting depth
each kind of IR to best advantage. Constant table:
For example:

@ representation, type

@ storage class, offset(s)
Storage map:

@ storage layout

@ overlap information

@ (virtual) register assignments

@ PCC and FORTRAN 77 directly emit assembly code for control flow,
but build and pass around expression trees for expressions.

@ Many people have tried using a control flow graph with low-level,
three address code for each basic block.
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@ Many kinds of IR are used in practice.

@ There is no widespread agreement on this subject.
@ A compiler may need several different IRs

@ Choose IR with right level of detalil

@ Keep manipulation costs in mind
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Translating expressions

S —> id = E; {gen (top.get (id.lexeme) ’'=’ E.addr);}

E —> E1 + E2 {E.addr = new Temp();
gen(E.addr "=’ El.addr '+’ EZ2.addr);}

| - E1 {E.addr = new Temp() ;
gen(E.addr "=’ - E2.addr);}

| (E1) {E.addr = El.addr;}

| 1id {E.addr
@ Builds the three-address code for an assignment statement.

@ addr is an synthetic-attribute of E.
@ denotes the address that will hold the value of E.

@ Constructs a three-address instruction and appends the instruction

top.get (id.lexeme) ; }

Gap between HLL and IR

Gap between HLL and IR

@ High level languages may allow complexities that are not allowed
in IR (such as expressions with multiple operators).

@ High level languages have many syntactic constructs, not present
in the IR (such as if-then-else or loops)

Challenges in translation:
@ Deep nesting of constructs.
@ Recursive grammars.
@ We need a systematic approach to IR generation.
Goal:
@ A HLL to IR translator.
@ Input: A program in HLL.
@ Output: A program in IR (may be an AST or program text)
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Array elements dereference (Recall)

@ Elements are typically stored in a block of consecutive locations.

@ If the width of each array element is w, then the i”* element of
array A (say, starting at the address base), begins at the location:
base +ix w.

@ For multi-dimensions, beginning address of A[i;][i»] is calculated
by the formula:
base+1iy X w1 +iy X wy
where, w; is the width of the row, and w, is the width of one
element.

@ We declare arrays by the number of elements (n; is the size of the
j™ dimension) and the width of each element in an array is fixed
(say w).

The location for A[i;][i] is given by
base+ i1 Xny Xw—+ir X w
@ Q: If the array index does not start at ’0’, then ?
@ Q: What if the data is stored in column-major form?
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Translation of Array references

@ Extending the expression grammar with arrays:

S —> id = E;

L —> id [E]

| L1 [E]

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 45/53

Translation of Array references (contd)

L —> Id [E] ({L.array = top.get(id.lexeme);
L.type = L.array.type.elem;
L.addr = new Temp () ;
gen(L.addr "=’ E.addr’«’'L.type.width);}

| L1 [E] {L.array = Ll.array;
L.type = Ll.type.elem;
t = new Temp();
L.addr = new Temp () ;
gen(t "=’ E.addr "%’ L.type.width);
gen (L.addr "=’ Ll.addr '+’ t);}

3 L.type is the type of the subarray generated by L.
e For any type ¢: t.widrh gives get the width of the type.
e For any type 1: r.elem gives the element type.
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Translation of Array references (contd)

S -> id = E; {gen(top.get (id.lexeme) ’'=’ E.addr)}
| L = E; {gen(L.array.base’[’L.addr’]’ ’'=’" E.addr);}

E —> E1 + E2 {E.addr = new Temp();
gen(E.addr =’ El.addr "+’ E2.addr);}

| id {E.addr = top.get (id.lexeme);}

| L {E.addr = new Temp () ;

gen (E.addr ’'=’ L.a;ray.base’[’L.addr’]’);}
Nonterminal L has three synthesized attributes

1 L.addr denotes a temporary that is used while computing the offset
for the array reference.

2 L.array is a pointer to the ST entry for the array name. The field bq
gives the actual I-value of the array reference. |

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2020 46 /53

Translation of Array references (contd)

Example:
@ Let a denotes a 2 x 3 integer array.
@ Type of a is given by array(2,array(3, integer))
@ Width of a = 24 (size of integer = 4).
@ Type of ali] is array(3,integer), width = 12.
@ Type of ali][j] = integer
Exercise:
@ Write three adddress code for ¢ + ali][j]

tl =i « 12
t2 = j * 4
t3 = tl + t2
td = a [t3]
ts = c + t4

Q: What if we did not know the size of integer (machine dependent)
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IR generation for flow-of-control statements

P->S S.next = new Label();
P.code = S.code || label (S.next)
S->assgin S.code = assign.code

S->if (B) S1 B.true = new Label();
B.false = Sl.next = S.next
S.code = B.code || label (B.true) || Sl.code

S->if (B) Sl B.true = new Label();

else S2 B.false = new Label();
Sl.next = S2.next = S.next
S.code = B.code || label(B.true) || Sl.code
|| gen ("goto’ S.next)
|| label (B.false) || S2.code

@ code is an synthetic attribute: giving the code for that node.
@ Assume: gen only creates an instruction.
@ || concatenates the code.
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IR generation for boolean expressions
B -> Bl || B2 Bl.true = B.true

Bl.false = new Label ()

B2.true = B. true

B2.false = B.false

B.code = Bl.code || label(Bl.false) || B2.code

B -> Bl && B2 Bl.true = new Label (
Bl.false = B.false
B2.true = B. true
B2.false = B.false
B.code = Bl.code || label(Bl.true) || B2.code

B -> IB1 Bl.true = B.false
Bl.false = B.true
B.code = Bl.code

B -> El rel E2 t = new Temp ()
B.code=El.code| |E2.code| |gen(t’="El.addr rel.op E2.addr)
|l gen("if’” t ’"goto’ B.true)
|| gen(’goto’ B.false);

B —-> true B.code = gen(’goto’ B.true)
B -> false B.code = gen(’goto’ B.false)
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IR generation for flow-of-control statements

S->while (B) S1 begin = new Label();

B.true = new Label();
B.false = S.next
Sl.next = begin
S.code = label (begin) || B.code
|| label (B.true) || Sl.code

|| gen(’goto’ begin)

S—->S1 S2 Sl.next = new Label ()
S2.next = S.next
S.code = Sl.code || label(Sl.next) || S2.code

@ code is an synthetic attribute: giving the code for that node.
@ Assume: gen only creates an instruction.
@ || concatenates the code.
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Some challenges/questions

@ Avoiding redundant gotos. ?7?

@ Multiple passes. ??

@ How to translate implicit branches: break and continue?
@ How to translate switch statements efficiently?

@ How to translate procedure code?
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Closing remarks

What have we done today?
@ Intermediate Code Generation.
To read
@ Dragon Book. Sections 6.4, 6.5, 6.6, 6.7, 6.8, 6.9 and 2.8
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