
CS6013 - Modern Compilers: Theory and Practise
Introduction

V. Krishna Nandivada

IIT Madras

*

Academic Formalities

Written assignment = 5 marks.
Programming assignments = 50 marks.
Midterm = 20 marks, Final = 25 marks.
Extra marks

During the lecture time - individuals can get additional 5 marks.
How? - Ask a good question, answer a chosen question, make a
good point! Take 0.5 marks each. Max one mark per day per
person.

Attendance requirement – as per institute norms. Non compliance
will lead to ‘W’ grade.

Proxy attendance - is not a help; actually a disservice.
Plagiarism - A good word to know. A bad act to own.

Fail grade guaranteed.

Contact (Anytime) :
Instructor: Krishna, Email: nvk@cse.iitm.ac.in, Office: BSB 352.
TA : Aman Nougrahiya, Email: amannoug@cse

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 2 / 76

*

What, When and Why of Compilers

What:
A compiler is a program that can read a program in one language
and translates it into an equivalent program in another language.

When
1952, by Grace Hopper for A-0.
1957, Fortran compiler by John Backus and team.

Why? Study?
It is good to know how the food you eat, is cooked.
A programming language is an artificial language designed to
communicate instructions to a machine, particularly a computer.
For a computer to execute programs written in these languages,
these programs need to be translated to a form in which it can be
executed by the computer.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 3 / 76

*

Compilers – A “Sangam”

Compiler construction is a microcosm of computer science
Artificial Intelligence greedy algorithms, learning algorithms, . . .
Algo graph algorithms, union-find, dynamic programming, . . .
theory DFAs for scanning, parser generators, lattice theory, . . .
systems allocation, locality, layout, synchronization, . . .
architecture pipeline management, hierarchy management,
instruction set use, . . .
optimizations Operational research, load balancing, scheduling,
. . .

Inside a compiler, all these and many more come together. Has
probably the healthiest mix of theory and practise.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 4 / 76

*

Course outline

A rough outline (we may not strictly stick to this).
Overview of Compilers
Overview of lexical analysis and parsing.
Semantic analysis (aka type checking)
Intermediate code generation
Data flow analysis
Constant propagation
Static Single Assignment and Optimizations.
Loop optimizations
Liveness analysis
Register Allocation
Bitwidth aware register allocation
Code Generation
Overview of advanced topics.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 5 / 76

*

Your friends: Languages and Tools

Start exploring
Java - familiarity a must - Use eclipse to save you valuable coding
and debugging cycles.
JavaCC, JTB – tools you will learn to use.
Make Ant Scripts – recommended toolkit.
Find the course webpage:
http://www.cse.iitm.ac.in/∼krishna/cs6013/

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 6 / 76

*

Get set. Ready steady go!

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 7 / 76

*

Acknowledgement

These frames borrow liberal portions of text verbatim from Antony L.
Hosking @ Purdue and Jens Palsberg @ UCLA.

Copyright c©2013 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 8 / 76

*

Compilers – A closed area?

“Optimization for scalar machines was solved years ago”

Machines have changed drastically in the last 20 years

Changes in architecture⇒ changes in compilers

new features pose new problems
changing costs lead to different concerns
old solutions need re-engineering

Changes in compilers should prompt changes in architecture
New languages and features

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 9 / 76

*

Expectations

What qualities are important in a compiler?
1 Correct code
2 Output runs fast
3 Compiler runs fast
4 Compile time proportional to program size
5 Support for separate compilation
6 Good diagnostics for syntax errors
7 Works well with the debugger
8 Good diagnostics for flow anomalies
9 Cross language calls

10 Consistent, predictable optimization
Each of these shapes your expectations about this course

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 10 / 76

*

Abstract view

errors

compilercode code
source machine

Implications:
recognize legal (and illegal) programs
generate correct code
manage storage of all variables and code
agreement on format for object (or assembly) code

Big step up from assembler — higher level notations

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 11 / 76

*

Traditional two pass compiler

code
source

code
machinefront

end
back
end

IR

errors

Implications:
intermediate representation (IR).
front end maps legal code into IR
back end maps IR onto target machine
simplify retargeting
allows multiple front ends
multiple passes⇒ better code

A rough statement: Most of the problems in the Front-end are simpler
(polynomial time solution exists).
Most of the problems in the Back-end are harder (many problems are
NP-complete in nature).
Our focus: Mainly back end (95%) and little bit of front end (5%).

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 12 / 76

*

Phases inside the compiler

Front end responsibilities:
Recognize syntactically legal
code; report errors.
Recognize semantically legal
code; report errors.
Produce IR.

Back end responsibilities:
Optimizations, code
generation.

Our target
five out of seven phases.
glance over lexical and syntax
analysis – read yourself or
attend the undergraduate
course, if interested.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 13 / 76

*

Lexical analysis

Also known as scanning.
Reads a stream of characters and groups them into meaningful
sequences, called lexems.

A scanner must recognize the units of syntax

Q: How to specify patterns for the scanner?

Examples:

white space

<ws> ::= <ws> ’ ’
| <ws> ’\t’
| ’ ’
| ’\t’

keywords and operators
specified as literal patterns: do, end

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 14 / 76

*

More complex syntax

identifiers
alphabet followed by k alphanumerics (, $, &, . . .)
numbers

integers: 0 or digit from 1-9 followed by digits from 0-9
decimals: integer ’.’ digits from 0-9
reals: (integer or decimal) ’E’ (+ or -) digits from 0-9
complex: ’(’ real ’,’ real ’)’

We need a powerful notation to specify these patterns - regular
expressions

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 15 / 76

*

Examples of Regular Expressions

identifier
letter→ (a | b | c | ... | z | A | B | C | ... | Z)
digit→ (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)
id→ letter (letter | digit)∗

numbers
integer→ (+ | − | ε) (0 | (1 | 2 | 3 | ... | 9) digit∗)
decimal→ integer . (digit)∗

real→ (integer | decimal) E (+ | −) digit∗

complex→ ’(’ real , real ’)’

Most tokens can be described with REs
We can use REs to build scanners automatically

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 16 / 76

*

Generic examples of REs

Let Σ = {a,b}
a|b denotes {a,b}
(a|b)(a|b) denotes {aa,ab,ba,bb}
i.e., (a|b)(a|b) = aa|ab|ba|bb

a∗ denotes {ε,a,aa,aaa, . . .}
(a|b)∗ denotes the set of all strings of a’s and b’s (including ε)
i.e., (a|b)∗= (a∗b∗)∗
a|a∗b denotes {a,b,ab,aab,aaab,aaaab, . . .}

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 17 / 76

*

Recognizers

From a regular expression we can construct a

deterministic finite automaton (DFA)

Recognizer for identifier:

0 21

3

digit

other

letter

digit

letter

other

error

accept

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 18 / 76

*

Grammars for regular languages

Can we place a restriction on the form of a grammar to ensure that it
describes a regular language?
Provable fact:

For any RE r, ∃ a grammar g such that L(r) = L(g)

Grammars that generate regular sets are called regular grammars:

They have productions in one of 2 forms:
1 A→ aA
2 A→ a

where A is any non-terminal and a is any terminal symbol

These are also called type 3 grammars (Chomsky)

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 19 / 76

*

Finite Automata

A non-deterministic finite automaton (NFA) consists of:
1 a set of states S = {s0, . . . ,sn}
2 a set of input symbols Σ (the alphabet)
3 a transition function mapping state-symbol pairs to sets of states
4 a distinguished start state s0

5 a set of distinguished accepting or final states F

A Deterministic Finite Automaton (DFA) is a special case:
1 no state has a ε-transition, and
2 for each state s and input symbol a, ∃ at most one edge labelled a

leaving s

A DFA accepts x iff. ∃ a unique path through the transition graph from
s0 to a final state such that the edges spell x.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 20 / 76

*

DFAs and NFAs are equivalent

1 DFAs are clearly a subset of NFAs
2 Any NFA can be converted into a DFA, by simulating sets of

simultaneous states:
each DFA state corresponds to a set of NFA states
possible exponential blowup

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 21 / 76

*

Limits of regular languages

Not all languages are regular
One cannot construct DFAs to recognize these languages:

L = {p(k)q(k)}
L = {wcw(rev|w ∈ Σ∗}

Note: neither of these is a regular expression!
(DFAs cannot count!)
But, this is a little subtle. One can construct DFAs for:

alternating 0’s and 1’s
(ε | 1)(01)∗ (ε | 0)

sets of pairs of 0’s and 1’s
(01 | 10)+

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 22 / 76

*

The role of the parser

code
source tokens

errors

scanner parser IR

A parser
performs context-free syntax analysis
guides context-sensitive analysis
constructs an intermediate representation
produces meaningful error messages
attempts error correction

For the next couple of lecture hours, we will look at parser construction

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 23 / 76

*

Syntax analysis by using a CFG

Context-free syntax is specified with a context-free grammar.
Formally, a CFG G is a 4-tuple (Vt,Vn,S,P), where:

Vt is the set of terminal symbols in the grammar.
For our purposes, Vt is the set of tokens returned by the
scanner.

Vn, the nonterminals, is a set of syntactic variables that
denote sets of (sub)strings occurring in the language.
These are used to impose a structure on the grammar.

S is a distinguished nonterminal (S ∈ Vn) denoting the entire
set of strings in L(G).
This is sometimes called a goal symbol.

P is a finite set of productions specifying how terminals and
non-terminals can be combined to form strings in the
language.
Each production must have a single non-terminal on its
left hand side.

The set V = Vt∪Vn is called the vocabulary of G
V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 24 / 76

*

Notation and terminology

a,b,c, . . . ∈ Vt

A,B,C, . . . ∈ Vn

U,V,W, . . . ∈ V

α,β ,γ, . . . ∈ V∗
u,v,w, . . . ∈ Vt∗

If A→ γ then αAβ ⇒ αγβ is a single-step derivation using A→ γ

Similarly,→∗ and⇒+ denote derivations of ≥ 0 and ≥ 1 steps

If S→∗ β then β is said to be a sentential form of G

L(G) = {w ∈ Vt∗ | S⇒+ w}, w ∈ L(G) is called a sentence of G

Note, L(G) = {β ∈ V∗ | S→∗ β}∩Vt∗

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 25 / 76

*

Derivations

We can view the productions of a CFG as rewriting rules.
Using our example CFG:

1 〈goal〉 ::= 〈expr〉
2 〈expr〉 ::= 〈expr〉+ 〈term〉
3 | 〈expr〉−〈term〉
4 | 〈term〉
5 〈term〉 ::= 〈term〉 ∗ 〈factor〉
6 | 〈term〉/〈factor〉
7 | 〈factor〉
8 〈factor〉 ::= num
9 | id

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 26 / 76

*

Deriving the derivation

Now, for the string x + 2 ∗ y:

〈goal〉 ⇒ 〈expr〉
⇒ 〈expr〉+ 〈term〉
⇒ 〈expr〉+ 〈term〉 ∗ 〈factor〉
⇒ 〈expr〉+ 〈term〉 ∗ 〈id,y〉
⇒ 〈expr〉+ 〈factor〉 ∗ 〈id,y〉
⇒ 〈expr〉+ 〈num,2〉 ∗ 〈id,y〉
⇒ 〈term〉+ 〈num,2〉 ∗ 〈id,y〉
⇒ 〈factor〉+ 〈num,2〉 ∗ 〈id,y〉
⇒ 〈id,x〉+ 〈num,2〉 ∗ 〈id,y〉

We have derived the sentence x + 2 ∗ y.
We denote this 〈goal〉→∗ id + num ∗ id.
Such a sequence of rewrites is a derivation or a parse.
The process of discovering a derivation is called parsing.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 27 / 76

*

Parse tree

expr

termexpr

term

factor

factorterm

factor

<num,2>

goal

+

*

<id,x>

<id,y>

Treewalk evaluation computes x + (2 ∗ y)

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 28 / 76

*

Different ways of parsing: Top-down Vs Bottom-up

Top-down parsers
start at the root of derivation tree and fill in
picks a production and tries to match the input
may require backtracking
some grammars are backtrack-free (predictive)

Bottom-up parsers
start at the leaves and fill in
start in a state valid for legal first tokens
as input is consumed, change state to encode possibilities
(recognize valid prefixes)
use a stack to store both state and sentential forms

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 29 / 76

*

Top-down parsing

A top-down parser starts with the root of the parse tree, labelled with
the start or goal symbol of the grammar.
To build a parse, it repeats the following steps until the fringe of the
parse tree matches the input string

1 At a node labelled A, select a production A→ α and construct the
appropriate child for each symbol of α

2 When a terminal is added to the fringe that doesn’t match the
input string, backtrack

3 Find next node to be expanded (must have a label in Vn)

The key is selecting the right production in step 1.

If the parser makes a wrong step, the “derivation” process does not
terminate.
Why is it bad?

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 30 / 76

*

Left-recursion

Top-down parsers cannot handle left-recursion in a grammar
Formally, a grammar is left-recursive if

∃A ∈ Vn such that A⇒+ Aα for some string α

Our simple expression grammar is left-recursive

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 31 / 76

*

Eliminating left-recursion

To remove left-recursion, we can transform the grammar
Consider the grammar fragment:

〈foo〉 ::= 〈foo〉α
| β

where α and β do not start with 〈foo〉
We can rewrite this as:

〈foo〉 ::= β 〈bar〉
〈bar〉 ::= α〈bar〉

| ε

where 〈bar〉 is a new non-terminal

This fragment contains no left-recursion

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 32 / 76

*

How much lookahead is needed?

We saw that top-down parsers may need to backtrack when they
select the wrong production
Do we need arbitrary lookahead to parse CFGs?

in general, yes
use the Earley or Cocke-Younger, Kasami algorithms

Fortunately
large subclasses of CFGs can be parsed with limited lookahead
most programming language constructs can be expressed in a
grammar that falls in these subclasses

Among the interesting subclasses are:
LL(1): left to right scan, left-most derivation, 1-token lookahead;

and
LR(1): left to right scan, reversed right-most derivation, 1-token

lookahead

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 33 / 76

*

Predictive parsing

Basic idea:
For any two productions A→ α | β , we would like a distinct way of
choosing the correct production to expand.
For some RHS α ∈ G, define FIRST(α) as the set of tokens that
appear first in some string derived from α.
That is, for some w ∈ V∗t , w ∈ FIRST(α) iff. α ⇒∗ wγ.
Key property:
Whenever two productions A→ α and A→ β both appear in the
grammar, we would like

FIRST(α)∩ FIRST(β) = φ

This would allow the parser to make a correct choice with a
lookahead of only one symbol!

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 34 / 76

*

Left factoring

What if a grammar does not have this property?
Sometimes, we can transform a grammar to have this property.

For each non-terminal A find the longest prefix
α common to two or more of its alternatives.

if α 6= ε then replace all of the A productions
A→ αβ1 | αβ2 | · · · | αβn

with
A→ αA′

A′→ β1 | β2 | · · · | βn

where A′ is a new non-terminal.

Repeat until no two alternatives for a single
non-terminal have a common prefix.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 35 / 76

*

Example

There are two non-terminals
to left factor:
〈expr〉 ::= 〈term〉+ 〈expr〉

| 〈term〉−〈expr〉
| 〈term〉

〈term〉 ::= 〈factor〉 ∗ 〈term〉
| 〈factor〉/〈term〉
| 〈factor〉

Applying the transformation:

〈expr〉 ::= 〈term〉〈expr′〉
〈expr′〉 ::= +〈expr〉

| −〈expr〉
| ε

〈term〉 ::= 〈factor〉〈term′〉
〈term′〉 ::= ∗〈term〉

| /〈term〉
| ε

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 36 / 76

*

Indirect Left-recursion elimination

Given a left-factored CFG, to eliminate left-recursion:

if ∃ A→ Aα then replace all of the A productions
A→ Aα | β | . . . | γ

with
A→ NA′

N→ β | . . . | γ
A′→ αA′ | ε

where N and A′ are new productions.

Repeat until there are no left-recursive productions.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 37 / 76

*

Generality

Question:
By left factoring and eliminating left-recursion, can we
transform an arbitrary context-free grammar to a form where it
can be predictively parsed with a single token lookahead?

Answer:
Given a context-free grammar that doesn’t meet our
conditions, it is undecidable whether an equivalent grammar
exists that does meet our conditions.

Many context-free languages do not have such a grammar:

{an0bn | n≥ 1}∪{an1b2n | n≥ 1}

Must look past an arbitrary number of a’s to discover the 0 or the 1 and
so determine the derivation.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 38 / 76

*

Self reading

Recursive decent parsing.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 39 / 76

*

Non-recursive predictive parsing

Now, a predictive parser looks like:

parsing

stack

scanner
code

source
parser

tables

table−driven IR
tokens

Rather than writing recursive code, we build tables.
Why?Building tables can be automated!

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 40 / 76

*

Table-driven parsers

A parser generator system often looks like:

parsing

stack

scanner
code

source
parser

table−driven

parser
tablesgeneratorgrammar

tokens
IR

This is true for both top-down (LL) and bottom-up (LR) parsers
This also uses a stack – but mainly to remember part of the input
string; no recursion.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 41 / 76

*

FIRST

For a string of grammar symbols α, define FIRST(α) as:
the set of terminals that begin strings derived from α:
{a ∈ Vt | α ⇒∗ aβ}
If α ⇒∗ ε then ε ∈ FIRST(α)

FIRST(α) contains the tokens valid in the initial position in α

To build FIRST(X):
1 If X ∈ Vt then FIRST(X) is {X}
2 If X→ ε then add ε to FIRST(X)
3 If X→ Y1Y2 · · ·Yk:

1 Put FIRST(Y1)−{ε} in FIRST(X)
2 ∀i : 1 < i≤ k, if ε ∈ FIRST(Y1)∩·· ·∩ FIRST(Yi−1)

(i.e., Y1 · · ·Yi−1⇒∗ ε)
then put FIRST(Yi)−{ε} in FIRST(X)

3 If ε ∈ FIRST(Y1)∩·· ·∩ FIRST(Yk) then put ε in FIRST(X)

Repeat until no more additions can be made.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 42 / 76

*

FOLLOW

For a non-terminal A, define FOLLOW(A) as

the set of terminals that can appear immediately to the right
of A in some sentential form

Thus, a non-terminal’s FOLLOW set specifies the tokens that can
legally appear after it.
A terminal symbol has no FOLLOW set.
To build FOLLOW(A):

1 Put $ in FOLLOW(〈goal〉)
2 If A→ αBβ :

1 Put FIRST(β)−{ε} in FOLLOW(B)
2 If β = ε (i.e., A→ αB) or ε ∈ FIRST(β) (i.e., β ⇒∗ ε) then put

FOLLOW(A) in FOLLOW(B)

Repeat until no more additions can be made

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 43 / 76

*

LL(1) grammars

Previous definition

A grammar G is LL(1) iff. for all non-terminals A, each distinct
pair of productions A→ β and A→ γ satisfy the condition
FIRST(β)

⋂
FIRST(γ) = φ .

What if A⇒∗ ε?
Revised definition

A grammar G is LL(1) iff. for each set of productions
A→ α1 | α2 | · · · | αn:

1 FIRST(α1),FIRST(α2), . . . ,FIRST(αn) are all pairwise
disjoint

2 If αi⇒∗ ε then
FIRST(αj)

⋂
FOLLOW(A) = φ ,∀1≤ j≤ n, i 6= j.

If G is ε-free, condition 1 is sufficient.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 44 / 76

*

LL(1) grammars

Provable facts about LL(1) grammars:
1 No left-recursive grammar is LL(1)
2 No ambiguous grammar is LL(1)
3 Some languages have no LL(1) grammar
4 A ε–free grammar where each alternative expansion for A begins

with a distinct terminal is a simple LL(1) grammar.
Example

S→ aS | a is not LL(1) because FIRST(aS) = FIRST(a) = {a}
S→ aS′

S′→ aS′ | ε
accepts the same language and is LL(1)

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 45 / 76

*

LL(1) parse table construction

Input: Grammar G
Output: Parsing table M
Method:

1 ∀ productions A→ α:
1 ∀a ∈ FIRST(α), add A→ α to M[A,a]
2 If ε ∈ FIRST(α):

1 ∀b ∈ FOLLOW(A), add A→ α to M[A,b]
2 If $ ∈ FOLLOW(A) then add A→ α to M[A,$]

2 Set each undefined entry of M to error

If ∃M[A,a] with multiple entries then grammar is not LL(1).

Note: recall a,b ∈ Vt, so a,b 6= ε

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 46 / 76

*

Example

Our long-suffering expression grammar:

S→ E1 E′→+E3 | −E4 | ε5 T ′→∗T7 | /T8 | ε9
E→ TE′2 T→ FT ′6 F→ num10 | id11

FIRST FOLLOW id num + − ∗ / $
S num,id $ 1 1 − − − − −
E num,id $ 2 2 − − − − −
E′ ε,+,− $ − − 3 4 − − 5
T num,id +,−,$ 6 6 − − − − −
T ′ ε,∗,/ +,−,$ − − 9 9 7 8 9
F num,id +,−,∗,/,$ 11 10 − − − − −
id id −
num num −
∗ ∗ −
/ / −
+ + −
− − −

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 47 / 76

*

A grammar that is not LL(1)

〈stmt〉 ::= if 〈expr〉 then 〈stmt〉
| if 〈expr〉 then 〈stmt〉 else 〈stmt〉
| . . .

Left-factored: 〈stmt〉 ::= if 〈expr〉 then 〈stmt〉 〈stmt′〉 | . . .
〈stmt′〉 ::= else 〈stmt〉 | ε

Now,

FIRST(〈stmt′〉) = {ε,else}
Also, FOLLOW(〈stmt′〉) = {else,$}
But, FIRST(〈stmt′〉)

⋂
FOLLOW(〈stmt′〉) = {else} 6= φ

On seeing else, there is a conflict between choosing

〈stmt′〉 ::= else 〈stmt〉 and 〈stmt′〉 ::= ε

⇒ grammar is not LL(1)!
The fix:

Put priority on 〈stmt′〉 ::= else 〈stmt〉 to associate else with
closest previous then.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 48 / 76

*

Another example of painful left-factoring

Here is a typical example where a programming language fails to
be LL(1):
stmt → asginment | call | other
assignment → id := exp
call → id (exp-list)

This grammar is not in a form that can be left factored. We must
first replace assignment and call by the right-hand sides of their
defining productions:
stmt → id := exp | id (exp-list) | other

We left factor:
statement → id stmt’ | other
stmt’ → := exp | (exp-list)

See how the grammar obscures the language semantics.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 49 / 76

*

Revision 1/4

S→ E1
E→ TE′2
E′→+E3 | −E4 | ε5
T→ FT ′6
T ′→∗T7 | /T8 | ε9
F→ num10 | id11

Compute the FIRST and the FOLLOW sets.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 50 / 76

*

Revision 2/4: FIRST and FOLLOW sets

FIRST FOLLOW

S {num,id} {$}
E {num,id} {$}
E′ {ε,+,−} {$}
T {num,id} {+,−,$}
T ′ {ε,∗,/} {+,−,$}
F {num,id} {+,−,∗,/,$}
id {id} −
num {num} −
∗ {∗} −
/ {/} −
+ {+} −
− {−} −

Build the parse table.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 51 / 76

*

Revision 3/4: Parse Table

id num + − ∗ / $

S S→ E S→ E − − − − −
E E→ TE′ E→ TE′ − − − − −
E′ − − E′→+E E′→−E − − E′→ ε

T T→ FT ′ T→ FT ′ − − − − −
T ′ − − T ′→ ε T ′→ ε T ′→∗T T ′→ /T T ′→ ε

F F→ id F→ num − − − − −

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 52 / 76

*

Revision 4/4: Building the parse tree

Input: a string w and a parsing table M for G

tos ← 0
Stack[tos] ← EOF
Stack[++tos] ← root node
Stack[++tos] ← Start Symbol
token ← next token()
repeat

X ← Stack[tos]
if X is a terminal or EOF then

if X = token then
pop X
token ← next token()
pop and fill in node

else error()
else /* X is a non-terminal */

if M[X,token] = X→ Y1Y2 · · ·Yk then
pop X
pop node for X
build node for each child and
make it a child of node for X
push nk,Yk,nk−1,Yk−1, · · · ,n1,Y1

else error()
until X = EOF

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 53 / 76

*

Revision 3/4: Parse Table

id num + − ∗ / $

S S→ E S→ E − − − − −
E E→ TE′ E→ TE′ − − − − −
E′ − − E′→+E E′→−E − − E′→ ε

T T→ FT ′ T→ FT ′ − − − − −
T ′ − − T ′→ ε T ′→ ε T ′→∗T T ′→ /T T ′→ ε

F F→ id F→ num − − − − −

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 54 / 76

*

Next: Bottum up Parsing.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 55 / 76

*

Some definitions

Recall
For a grammar G, with start symbol S, any string α such that
S⇒∗ α is called a sentential form
If α ∈ V∗t , then α is called a sentence in L(G)

Otherwise it is just a sentential form (not a sentence in L(G))
A left-sentential form is a sentential form that occurs in the leftmost
derivation of some sentence.
A right-sentential form is a sentential form that occurs in the rightmost
derivation of some sentence.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 56 / 76

*

Bottom-up parsing

Goal:
Given an input string w and a grammar G, construct a parse
tree by starting at the leaves and working to the root.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 57 / 76

*

Reductions Vs Derivations

Reduction:
At each reduction step, a specific substring matching the body of
a production is replaced by the non-terminal at the head of the
production.

Key decisions
When to reduce?
What production rule to apply?

Reduction Vs Derivations
Recall: In derivation: a non-terminal in a sentential form is
replaced by the body of one of its productions.
A reduction is reverse of a step in derivation.

Bottum-up parsing is the process of “reducing” a string w to the
start symbol.
Goal of bottum-up parsing: build derivation tree in reverse.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 58 / 76

*

Example

Consider the grammar

1 S → aABe
2 A → Abc
3 | b
4 B → d

and the input string abbcde
Prod’n. Sentential Form

3 a b bcde

2 a Abc de

4 aA d e

1 aABe
– S

The trick appears to be scanning the input and finding valid sentential
forms.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 59 / 76

*

Handles

S

α

A

wβ

The handle A→ β in the parse tree
for αβw

Informally, a “handle” is a
substring that matches the body
of a production (not necessarily
the first one).

And reducing this handle,
represents one step of reduction
(or reverse rightmost derivation).

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 60 / 76

*

Handles

Theorem:

If G is unambiguous then every right-sentential form has a
unique handle.

Proof: (by definition)
1 G is unambiguous⇒ rightmost derivation is unique
2 ⇒ a unique production A→ β applied to take γi−1 to γi

3 ⇒ a unique position k at which A→ β is applied
4 ⇒ a unique handle A→ β

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 61 / 76

*

Example

The left-recursive expression grammar (original form)
1 〈goal〉 ::= 〈expr〉
2 〈expr〉 ::= 〈expr〉+ 〈term〉
3 | 〈expr〉−〈term〉
4 | 〈term〉
5 〈term〉 ::= 〈term〉 ∗ 〈factor〉
6 | 〈term〉/〈factor〉
7 | 〈factor〉
8 〈factor〉 ::= num
9 | id

Prod’n. Sentential Form
– 〈goal〉
1 〈expr〉
3 〈expr〉 − 〈term〉
5 〈expr〉 − 〈term〉 ∗ 〈factor〉
9 〈expr〉 − 〈term〉 ∗ id
7 〈expr〉 − 〈factor〉 ∗ id
8 〈expr〉 − num ∗ id
4 〈term〉 − num ∗ id
7 〈factor〉 − num ∗ id
9 id − num ∗ id

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 62 / 76

*

Handle-pruning

The process to construct a bottom-up parse is called handle-pruning.
To construct a rightmost derivation

S = γ0⇒ γ1⇒ γ2⇒ ··· ⇒ γn−1⇒ γn = w

we set i to n and apply the following simple algorithm
for i = n downto 1

1 find the handle Ai→ βi in γi
2 replace βi with Ai to generate γi−1

This takes 2n steps, where n is the length of the derivation

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 63 / 76

*

Stack implementation

One scheme to implement a handle-pruning, bottom-up parser is
called a shift-reduce parser.
Shift-reduce parsers use a stack and an input buffer

1 initialize stack with $
2 Repeat until the top of the stack is the goal symbol and the input

token is $
a) find the handle

if we don’t have a handle on top of the stack, shift an input symbol
onto the stack

b) prune the handle
if we have a handle A→ β on the stack, reduce

i) pop | β | symbols off the stack
ii) push A onto the stack

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 64 / 76

*

Example: back to x − 2 ∗ y

1 S →E
2 E→E + T
3 | E−T
4 | T
5 T→ T ∗F
6 | T/F
7 | F
8 F→ num
9 | id

Stack Input Action
$ id − num ∗ id S
$id − num ∗ id R9
$〈factor〉 − num ∗ id R7
$〈term〉 − num ∗ id R4
$〈expr〉 − num ∗ id S
$〈expr〉 − num ∗ id S
$〈expr〉 − num ∗ id R8
$〈expr〉 − 〈factor〉 ∗ id R7
$〈expr〉 − 〈term〉 ∗ id S
$〈expr〉 − 〈term〉 ∗ id S
$〈expr〉 − 〈term〉 ∗ id R9
$〈expr〉 − 〈term〉 ∗ 〈factor〉 R5
$〈expr〉 − 〈term〉 R3
$〈expr〉 R1
$〈goal〉 A

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 65 / 76

*

Shift-reduce parsing

Shift-reduce parsers are simple to understand
A shift-reduce parser has just four canonical actions:

1 shift — next input symbol is shifted onto the top of the stack
2 reduce — right end of handle is on top of stack;

locate left end of handle within the stack;
pop handle off stack and push appropriate non-terminal LHS

3 accept — terminate parsing and signal success
4 error — call an error recovery routine

Key insight: recognize handles with a DFA:
DFA transitions shift states instead of symbols
accepting states trigger reductions

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 66 / 76

*

LR parsing

The skeleton parser:

push s0
token ← next token()
repeat forever

s ← top of stack
if action[s,token] = "shift si" then

push si
token ← next token()

else if action[s,token] = "reduce A→ β"
then
pop | β | states
s′← top of stack
push goto[s′,A]

else if action[s, token] = "accept" then
return

else error()

“How many ops?”:k shifts, l reduces, and 1 accept, where k is length
of input string and l is length of reverse rightmost derivation

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 67 / 76

*

Example tables

state ACTION GOTO
id + ∗ $ E T F

0 s4 – – – 1 2 3
1 – – – acc – – –
2 – s5 – r3 – – –
3 – r5 s6 r5 – – –
4 – r6 r6 r6 – – –
5 s4 – – – 7 2 3
6 s4 – – – – 8 3
7 – – – r2 – – –
8 – r4 – r4 – – –

The Grammar
1 S →E
2 E→ T + E
3 | T
4 T→F ∗T
5 | F
6 F→ id

Note: This is a simple little right-recursive grammar. It is not the same grammar as in
previous lectures.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 68 / 76

*

Example using the tables

Stack Input Action
$ 0 id∗ id+ id$ s4
$ 0 4 ∗ id+ id$ r6
$ 0 3 ∗ id+ id$ s6
$ 0 3 6 id+ id$ s4
$ 0 3 6 4 + id$ r6
$ 0 3 6 3 + id$ r5
$ 0 3 6 8 + id$ r4
$ 0 2 + id$ s5
$ 0 2 5 id$ s4
$ 0 2 5 4 $ r6
$ 0 2 5 3 $ r5
$ 0 2 5 2 $ r3
$ 0 2 5 7 $ r2
$ 0 1 $ acc

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 69 / 76

*

LR(k) grammars

Informally, we say that a grammar G is LR(k) if, given a rightmost
derivation

S = γ0⇒ γ1⇒ γ2⇒ ·· · ⇒ γn = w,

we can, for each right-sentential form in the derivation:
1 isolate the handle of each right-sentential form, and
2 determine the production by which to reduce

by scanning γi from left to right, going at most k symbols beyond the
right end of the handle of γi.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 70 / 76

*

Why study LR grammars?

LR(1) grammars are often used to construct parsers.
We call these parsers LR(1) parsers.

virtually all context-free programming language constructs can be
expressed in an LR(1) form
LR grammars are the most general grammars parsable by a
deterministic, bottom-up parser
efficient parsers can be implemented for LR(1) grammars
LR parsers detect an error as soon as possible in a left-to-right
scan of the input
LR grammars describe a proper superset of the languages
recognized by predictive (i.e., LL) parsers

LL(k): recognize use of a production A→ β seeing first k
symbols derived from β

LR(k): recognize the handle β after seeing everything
derived from β plus k lookahead symbols

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 71 / 76

*

LR parsing

Three common algorithms to build tables for an “LR” parser:
1 SLR

smallest class of grammars
smallest tables (number of states)
simple, fast construction

2 LR(1)
full set of LR(1) grammars
largest tables (number of states)
slow, large construction

3 LALR(1)
intermediate sized set of grammars
same number of states as SLR
canonical construction is slow and large
better construction techniques exist

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 72 / 76

*

SLR vs. LR/LALR

An LR(1) parser for either Algol or Pascal has several thousand states,
while an SLR or LALR(1) parser for the same language may have
several hundred states.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 73 / 76

*

Left versus right recursion

Right Recursion:
needed for termination in predictive parsers
requires more stack space
right associative operators

Left Recursion:
works fine in bottom-up parsers
limits required stack space
left associative operators

Rule of thumb:
right recursion for top-down parsers
left recursion for bottom-up parsers

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 74 / 76

*

Parsing review

Recursive descent
A hand coded recursive descent parser directly encodes a
grammar (typically an LL(1) grammar) into a series of mutually
recursive procedures. It has most of the linguistic limitations of
LL(1).
LL(k)
An LL(k) parser must be able to recognize the use of a production
after seeing only the first k symbols of its right hand side.
LR(k)
An LR(k) parser must be able to recognize the occurrence of the
right hand side of a production after having seen all that is derived
from that right hand side with k symbols of lookahead.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 75 / 76

*

Closing remarks - parsing

Overview of Parsing.
Error checking.
LR parsing.

Reading:
Ch 1, 3, 4 from the Dragon book.

Announcement:
Assignment 1 is out. Due on Friday.
Next class: ?

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2013 76 / 76

