@ Flow analysis using 0-CFA and some simple improvements.

CS6848 - Principles of Programming Languages @ Closure conversion (revisit).
Exceptions What you should be able to answer? (necessary not sufficient)
@ Given a set of flow constraints solve them to get the flow sets.

@ Translate closures in Scheme to C.
Reminder
IIT Madras @ Assignment due in 1.5 days.

@ Seven more classes to go (Last instructional day for CS6848 -
26th April)

@ Final exam on May 1st
@ Portion - Post mid-term.

V. Krishna Nandivada

V.Krishna Nandivada (IIT Madras) CS6848 2/25

Extending simply typed lambda calculus with errors

@ Real-world programming — a function needs to signal to its caller

(or some one in the call chain) that it is not able perform some @ Errors - abort the program.

task. Examples: @ Recall: Extending the language requires - extension to syntax,
e Division by zero, array out of bounds, out of memory, etc. values, type rules and operational semantics.
@ One option is to return a special value. Issue: @ Expressions (recall our grammar for lambda calculus)
o Every caller has to now look for the special value explicitly.
@ Option 2: Automatic transfer of program control. Multiple variants en=--|error
exist:
o Abort the program when an exception occurs. @ Values — we don’t add any new values (discussion to follow).
e “throw” the exception — trap + recover (aka “caught”) @ Types. What should be the type of error? Do we need any
e Pass programmer specified data along with the exception — special types?

Programmer defined exceptions.

V.Krishna Nandivada (IIT Madras) CS6848 3/25 V.Krishna Nandivada (lIT Madras) CS6848 4/25

Type rules Operational semantics

@ We need rules for only application.

@ There is no restriction on the return type of a function. error e »error AppErrorl

@ Any function can throw an error. verror — error AppError2

@ So for each function s — ¢, we want the type of error : ¢

@ For the program to typecheck: @ Summary: abandon the work if there is an error (during the
o If we allow subtyping: then error: L. evaluation of the argument or the function).
e If we allow polymorphism: then error : VX.X @ Q: Can we get a situation where we get: error error ?

@ NO. Because, error is not a value.
@ Also note, the evaluation order.

V.Krishna Nandivada (IIT Madras) CS6848 5/25 V.Krishna Nandivada (IIT Madras) CS6848 6/25

Modification to type soundness Exceptions. Variant 2

@ Let us “catch” the exception and do something relevant.
@ Recall: Progress lemma: If e is a closed expression, and A+ e : ¢

then either e is a value, or there exists ¢’ such that e —y ¢’. @ Extension to syntax
We modify it to: en=---|try ewithe
@ Recall: Progress lemma: If e is a closed expression, and At e : ¢ .
then either e is a value or error, or there exists ¢’ such that @ New typing rules:
/
e—ye. Tme-Trv-With Albej:t Aley:t
Useless assignment: Prove the type soundness. YR Y A F try e with ey 1

V.Krishna Nandivada (lIT Madras) CS6848 7125 V.Krishna Nandivada (lIT Madras) CS6848 8/25

Operational semantics Exceptions variant 3 - User defined

@ The program point where the exception is thrown may want to
pass information.

@ Evaluating expressions that don't result in error. @ The handler may use this information - to take relevant action
(such as recovery, reversal, display some relevant message, and
tryvwithe—v SO on).
@ Evaluating an expression that evaluates to an error. @ Extension to syntax
try error withe—e e =---|throwe |try ewithe
@ Step @ New typing rules:
/
e — e Abey:t

trye; withe, = try e’l with ey Type-throw AFthrowe; :t

Abei:t Abey:t; —t

Type-Try-With
ype-ry Al trye withey:t

V.Krishna Nandivada (IIT Madras) CS6848) V.Krishna Nandivada (IIT Madras) CS6848)

Operational semantics Operational semantics (contd)

@ Application of a throw.

(throw v) e — throw v @ try with no exception.

tryvwithe—v
@ throw as an argument.

@ Evaluating an expression that throws an expression
vi (throw v;) — throw v

try throwvwithe—ev
@ throw of throw Y

N N b @ Step try.
throw (throw v) — throw v e1— e

@ Step throw. tryej withe, —»trye| withe;
ey — e
throw e; — throw e

V.Krishna Nandivada (IIT Madras) CS6848 11/25 V.Krishna Nandivada (lIT Madras) CS6848 12/25

Versioning Excepiions

@ Traditional exceptions provide only transfer of control.
@ Used typically for handling cases when unexpected conditions
arise.
@ The store (maps memory locations to values) is left untouched.
o ltis left to the programmer to manually undo any changes.

@ Exceptions

@ Reason about programs with exceptions.
@ Type rules and operational semantics for languages with

exceptions. e Q:Is handling the environment (maps variables to values) easy?
Paper reading @ Q: Can we provide transaction semantics to the non-local control
@ Groups! flow of control-exceptions?
@ Meet the instructor on Thursday. @ Goal: Revert computation to a well-defined state in response to
unexpected or undesirable conditions.
V.Krishna Nandivada (lIT Madras) CS6848 13/25 V.Krishna Nandivada (lIT Madras) CS6848 14 /25

Versioning Exceptions Extending the language with references

@ Each code is protected by an exception handler (installed by try. Extending the syntax

@ A versioned exception ensures that the content of the store, when e="--le;e|ref e|lele) := ex|unit
the exception is raised reflects the program state when the
corresponding handler was installed.

@ The data generated in the code protected by such exceptions are
implicitly versioned.

@ Each version is assocated with a particular generative exception

@ Creating a reference - creates a cell in memory.
@ The value stored in the cell is the value the expression e evaluates to.

@ Say, ris areference, then 1et s=r e makes s an aliasto r.
e Setting r := 32, will change the value of s and vice versa.

value.
@ When an exception is raised, the version corresponding to the Extending types
associated exception value is is restored. @ t:=---|Ref t|Unit
@ A handler is provided, which lets the programmer to re-executed Extending values

the protected code or print error message and so on. ® vi= - |lunit
Background needed
@ When do you need store?

@ Modeling store.

@ Think of Unir as the void type of C.

@ The result of evaluating an expression of type Unir is the constant uni = j

V.Krishna Nandivada (IIT Madras) CS6848 15/25 V.Krishna Nandivada (IIT Madras) CS6848 16/25

Type rules Modelling the store

@ Store can be seen as array of values.

@ Store can be seen as a map L — Values, where L is the set of
locations, and Values is the set of values.

@ We use o to represent the store.

@ Reference creation.

AFe:t
Alref e:Ref t

@ Dereference . . .
Abe:Reft @ Rules of operational semantics now will use o.
AlFle:t Syntax for store
@ Assignment. °
A|—€1:Reft1 Aber ity 0-:::¢|0-’l:‘}

Al e :=e: Unit)
Typing store elements

o Note: The left hand side is not necessarily a variable. =051t

V.Krishna Nandivada (IIT Madras) CS6848 17/25 V.Krishna Nandivada (IIT Madras) CS6848 18/25

Evaluation rules Evaluation rules

Defined over the reflexive, transitive closure of —y: o Create reference

—vy: (Expression,Store) —y (Expression, Store) (ref v,0) —y (I, 6]l — v]), where I is fresh

o @ Step - reference
@ Step - Application
(ev G> -V <ela Gl)

(ref e,0) —v (ref €,0’)

(e1,0) —v (e],0")

<€1€2,0> —vV <€II€2,GI> .
S A @ Dereference a location

@ Step - Arguments
o) — Il,o) —»y (o(l),0
<627 > \%4 <€/2,G/> < > 14 < () >

(viez,0) =y (vi€507) @ Step - Dereference

/,G/>

o)

@ Apply (e,0) —vy (e
(Ax.e)v,0) —v (e[x/v],0) (le,0) =y (le

V.Krishna Nandivada (IIT Madras) CS6848 19/25 V.Krishna Nandivada (/IT Madras) CS6848 20/25

Evaluation rules Versioning exceptions

@ Assignment. Syntax
<l =Y G> -V <umt’ G[I = V]> s € Simpi=c | Pr(xy,....x,)| refx| x| A x.e | xo(x;) | VExn(x)
e € Exp::=x| let x=sin €| x| :=xz| if x then e; elsees| try(y,e)| restore(p,q)

° - Assignment (Ih . .
Step - Assignment (Ihs) e vExn(x) — constructs a new exception. x is bound to a procedure

(e1,6) =y (¢}, 0") that defines the handler for this exgeption.
; - e ry (y,e) — evaluates y to an exception E, and then evaluates e.
(e1 :==e3,0) =y (€] :==e3,0") e restore (p,q) — p evaluates to an exception (say E).

@ Raises exception E.

@ Step - Assignment (rhs) @ Control is transferred to the closest enclosing ry expression for E.
. @ the handler of E is evaluated with ¢ as the argument.
(e2,0) —v (€5,0") @ Restores the state.
(I:=e,0) =y (l:=¢},0") Q:How to construct try-expression with multiple catches?

V.Krishna Nandivada (IIT Madras) CS6848 21/25 V.Krishna Nandivada (IIT Madras) CS6848 22/25
Versioning exceptions Operational Semantics
Types CE’SK machine: Control, Environment (p), Exception-stack (X), Store
° (o), Continuation Pointer (k)
T ::= Int |Bool|t — 7|Ref T|EXN (7T) (20 k0. 5) — (k. pl2),0,5)
Extension to type rules (letz =cine, p,k,0,L) — (e,plz + d,k,0,%)
) i (letz = Pr(z1,...,20)ine,p, k,0,5) —
@ Exception construction. (e, plz = Pr(p(z1), p(22), - . ., plzn))], k, 0,)
lletz = ref yine,p, k,0,%) — (e, ol s 1, b, ofl — ply)], %)
AbFx:t1 =B for fresh I
; lletz = lyine, p,k,o, %) — (e, ple - o(p())], k7, 5)
A vExn(x) : Exn(ty — 1) (letz = Ay.€'ine,p,k,0,%) — (e, plz — clo{Ay.¢, p)], k,0,%)
(letz =y(2)ine, p,k,0,8) —
© Try block A L. (e, o/l > p(2)], {ret (z,e, 0)} @ by, 3)
x: Exn(t) — 1) ein provided p(y) = clo (A w.¢/, p')
AF try(x, e)) (T1:=12, p,k,0,8) — (k, p(x2), o[p(z1) — p(z2)], T)
(if xthen e elsees, p, k,0,Z) — (e1,p0,k,0,%
@ Restore provided p(z) = true
Aby:nn Abx:Exn(t) — 1) (if zthen e else ey, p, k, 0, 8) — (eg,p, k, 0, %)
. provided p(z) = false
A restore(x,y) : f {{ret (z,e,p)} ® k,v,0,%) — (e, plz — v], k,0,%)

V.Krishna Nandivada (IIT Madras) CS6848 23/25 V.Krishna Nandivada (IIT Madras) CS6848 24 /25

Operational semantics for versioning exceptions Next class

(contd)

With exceptions:

(letz = vExn(y)ine, p, k,0,Z) — (e, p[z — exnVal {n, p(y))], k, o,)
for fresh n

(try(z,€),0,k,0,%) — (e,p,k,0,{(p(2),k,0)} ©X)

(restore(a:, y)7 P ky g, 2) i ({exn <’I’L, p(y))} S ka T, E)

(fexn (Kﬁﬁd;dkp((,z)g):i‘v(a; (:[;E”L ol {st0 ()} & 0, 5 How to implement Versioning Exceptions.
provided ¥ = X' @ {(exnVal (n,clo (A z.e,p)), k', 0"} } & E"
and (exnVal (n,v),k',0’) ¢ ¥’

<{St0 <OJ>} @ k! v, 0, E) - (k! v, U,s Z)

@ when an exception is thrown, the continuation of the try expression is
evaluated in the context of the “versioned” store.

@ Changes made to the store in the exception handler are not visible in the
continuation.

@ Q: What if updates performed in the handler are to be visible in its

ontinuation? — Se ading
V.Krishna Nandivada (IIT Madras) CS6848 V.Krishna Nandivada (IIT Madras) CS6848 26/25

