
CS6848 - Principles of Programming Languages
Exceptions

V. Krishna Nandivada

IIT Madras

*

Recap

Flow analysis using 0-CFA and some simple improvements.
Closure conversion (revisit).

What you should be able to answer? (necessary not sufficient)
Given a set of flow constraints solve them to get the flow sets.
Translate closures in Scheme to C.

Reminder
Assignment due in 1.5 days.
Seven more classes to go (Last instructional day for CS6848 -
26th April)
Final exam on May 1st
Portion - Post mid-term.

V.Krishna Nandivada (IIT Madras) CS6848 2 / 25

*

Exceptions

Real-world programming – a function needs to signal to its caller
(or some one in the call chain) that it is not able perform some
task. Examples:

Division by zero, array out of bounds, out of memory, etc.
One option is to return a special value. Issue:

Every caller has to now look for the special value explicitly.
Option 2: Automatic transfer of program control. Multiple variants
exist:

Abort the program when an exception occurs.
“throw” the exception – trap + recover (aka “caught”)
Pass programmer specified data along with the exception –
Programmer defined exceptions.

V.Krishna Nandivada (IIT Madras) CS6848 3 / 25

*

Extending simply typed lambda calculus with errors

Errors - abort the program.
Recall: Extending the language requires - extension to syntax,
values, type rules and operational semantics.
Expressions (recall our grammar for lambda calculus)

e ::= · · · |error

Values – we don’t add any new values (discussion to follow).
Types. What should be the type of error? Do we need any
special types?

V.Krishna Nandivada (IIT Madras) CS6848 4 / 25

*

Type rules

There is no restriction on the return type of a function.
Any function can throw an error.
So for each function s→ t, we want the type of error : t
For the program to typecheck:

If we allow subtyping: then error :⊥.
If we allow polymorphism: then error : ∀X.X

V.Krishna Nandivada (IIT Madras) CS6848 5 / 25

*

Operational semantics

We need rules for only application.

error e→ error AppError1
v error→ error AppError2

Summary: abandon the work if there is an error (during the
evaluation of the argument or the function).
Q: Can we get a situation where we get: error error ?

NO. Because, error is not a value.

Also note, the evaluation order.

V.Krishna Nandivada (IIT Madras) CS6848 6 / 25

*

Modification to type soundness

Recall: Progress lemma: If e is a closed expression, and A ` e : t
then either e is a value, or there exists e′ such that e→V e′.

We modify it to:
Recall: Progress lemma: If e is a closed expression, and A ` e : t
then either e is a value or error, or there exists e′ such that
e→V e′.

Useless assignment: Prove the type soundness.

V.Krishna Nandivada (IIT Madras) CS6848 7 / 25

*

Exceptions. Variant 2

Let us “catch” the exception and do something relevant.

Extension to syntax

e ::= · · · |try e with e

New typing rules:

Type-Try-With
A ` e1 : t A ` e2 : t

A ` try e1 with e2 : t

V.Krishna Nandivada (IIT Madras) CS6848 8 / 25

*

Operational semantics

Evaluating expressions that don’t result in error.

try v with e→ v

Evaluating an expression that evaluates to an error.

try error with e→ e

Step
e1→ e′1

try e1 with e2→ try e′1 with e2

V.Krishna Nandivada (IIT Madras) CS6848 9 / 25

*

Exceptions variant 3 - User defined

The program point where the exception is thrown may want to
pass information.
The handler may use this information - to take relevant action
(such as recovery, reversal, display some relevant message, and
so on).

Extension to syntax

e ::= · · · |throw e |try e with e

New typing rules:

Type-throw
A ` e1 : t

A ` throw e1 : t

Type-Try-With
A ` e1 : t A ` e2 : t1→ t

A ` try e1 with e2 : t

V.Krishna Nandivada (IIT Madras) CS6848 10 / 25

*

Operational semantics

Application of a throw.

(throw v) e→ throw v

throw as an argument.

v1 (throw v2)→ throw v2

throw of throw

throw (throw v)→ throw v

Step throw.
e1→ e2

throw e1→ throw e2

V.Krishna Nandivada (IIT Madras) CS6848 11 / 25

*

Operational semantics (contd)

try with no exception.

try v with e→ v

Evaluating an expression that throws an expression

try throw v with e→ e v

Step try.
e1→ e′1

try e1 with e2→ try e′1 with e2

V.Krishna Nandivada (IIT Madras) CS6848 12 / 25

*

Recap

Exceptions

Reason about programs with exceptions.
Type rules and operational semantics for languages with
exceptions.

Paper reading
Groups!
Meet the instructor on Thursday.

V.Krishna Nandivada (IIT Madras) CS6848 13 / 25

*

Versioning Exceptions

Traditional exceptions provide only transfer of control.
Used typically for handling cases when unexpected conditions
arise.
The store (maps memory locations to values) is left untouched.

It is left to the programmer to manually undo any changes.
Q: Is handling the environment (maps variables to values) easy?

Q: Can we provide transaction semantics to the non-local control
flow of control-exceptions?
Goal: Revert computation to a well-defined state in response to
unexpected or undesirable conditions.

V.Krishna Nandivada (IIT Madras) CS6848 14 / 25

*

Versioning Exceptions

Each code is protected by an exception handler (installed by try.
A versioned exception ensures that the content of the store, when
the exception is raised reflects the program state when the
corresponding handler was installed.
The data generated in the code protected by such exceptions are
implicitly versioned.
Each version is assocated with a particular generative exception
value.
When an exception is raised, the version corresponding to the
associated exception value is is restored.
A handler is provided, which lets the programmer to re-executed
the protected code or print error message and so on.

Background needed
When do you need store?
Modeling store.

V.Krishna Nandivada (IIT Madras) CS6848 15 / 25

*

Extending the language with references
Extending the syntax

e = · · · |e;e|ref e|!e|e1 := e2|unit

Creating a reference - creates a cell in memory.

The value stored in the cell is the value the expression e evaluates to.

Say, r is a reference, then let s = r e makes s an alias to r.
Setting r := 32, will change the value of s and vice versa.

Extending types

t := · · · |Ref t|Unit

Extending values

v ::= · · · |l|unit

Think of Unit as the void type of C.

The result of evaluating an expression of type Unit is the constant unit.

V.Krishna Nandivada (IIT Madras) CS6848 16 / 25

*

Type rules

Reference creation.

A ` e : t
A ` ref e : Ref t

Dereference
A ` e : Ref t

A `!e : t
Assignment.

A ` e1 : Ref t1 A ` e2 : t1
A ` e1 := e2 : Unit

Note: The left hand side is not necessarily a variable.

V.Krishna Nandivada (IIT Madras) CS6848 17 / 25

*

Modelling the store

Store can be seen as array of values.
Store can be seen as a map L→ Values, where L is the set of
locations, and Values is the set of values.
We use σ to represent the store.
Rules of operational semantics now will use σ .

Syntax for store

σ ::= Φ|σ , l = v

Typing store elements
Σ ::= Φ|Σ, l : t

V.Krishna Nandivada (IIT Madras) CS6848 18 / 25

*

Evaluation rules

Defined over the reflexive, transitive closure of→V :

→V : 〈Expression,Store〉 →V 〈Expression,Store〉

Step - Application

〈e1,σ〉 →V 〈e′1,σ ′〉
〈e1e2,σ〉 →V 〈e′1e2,σ

′〉

Step - Arguments

〈e2,σ〉 →V 〈e′2,σ ′〉
〈v1e2,σ〉 →V 〈v1e′2σ ′〉

Apply
〈(λx.e)v,σ〉 →V 〈e[x/v],σ〉

V.Krishna Nandivada (IIT Madras) CS6848 19 / 25

*

Evaluation rules

Create reference

〈ref v,σ〉 →V 〈l,σ [l 7→ v]〉, where l is fresh

Step - reference

〈e,σ〉 →V 〈e′,σ ′〉
〈ref e,σ〉 →V 〈ref e′,σ ′〉

Dereference a location

〈!l,σ〉 →V 〈σ(l),σ〉

Step - Dereference

〈e,σ〉 →V 〈e′,σ ′〉
〈!e,σ〉 →V 〈!e′,σ ′〉

V.Krishna Nandivada (IIT Madras) CS6848 20 / 25

*

Evaluation rules

Assignment.
〈l := v,σ〉 →V 〈unit,σ [l 7→ v]〉

Step - Assignment (lhs)

〈e1,σ〉 →V 〈e′1,σ ′〉
〈e1 := e2,σ〉 →V 〈e′1 := e2,σ

′〉

Step - Assignment (rhs)

〈e2,σ〉 →V 〈e′2,σ ′〉
〈l := e2,σ〉 →V 〈l := e′2,σ

′〉

V.Krishna Nandivada (IIT Madras) CS6848 21 / 25

*

Versioning exceptions

Syntax
s ∈ Simp::= c | Pr(x1,. . . ,xn)| ref x | !x | λ x.e | x0(x1) | vExn(x)
e ∈ Exp::= x| let x=s in e| x1 := x2| if x then e1 else e2| try(y,e)| restore(p,q)

vExn(x) – constructs a new exception. x is bound to a procedure
that defines the handler for this exception.
try (y,e) – evaluates y to an exception E, and then evaluates e.
restore (p,q) – p evaluates to an exception (say E).

Raises exception E.
Control is transferred to the closest enclosing try expression for E.
the handler of E is evaluated with q as the argument.
Restores the state.

Q:How to construct try-expression with multiple catches?

V.Krishna Nandivada (IIT Madras) CS6848 22 / 25

*

Versioning exceptions

Types

τ ::= Int |Bool|τ → τ|Ref τ|Exn (τ)

Extension to type rules
Exception construction.

A ` x : t1→ t2
A ` vExn(x) : Exn(t1→ t2)

Try block
A ` x : Exn(t1→ t2) A ` e : t2

A ` try(x,e) : t2

Restore
A ` y : t1 A ` x : Exn(t1→ t2)

A ` restore(x,y) : t2

V.Krishna Nandivada (IIT Madras) CS6848 23 / 25

*

Operational Semantics

CE2SK machine: Control, Environment (ρ), Exception-stack (Σ), Store
(σ), Continuation Pointer (k)

V.Krishna Nandivada (IIT Madras) CS6848 24 / 25

*

Operational semantics for versioning exceptions
(contd)
With exceptions:

when an exception is thrown, the continuation of the try expression is
evaluated in the context of the “versioned” store.

Changes made to the store in the exception handler are not visible in the
continuation.

Q: What if updates performed in the handler are to be visible in its
continuation? – Self reading.

V.Krishna Nandivada (IIT Madras) CS6848 25 / 25

*

Next class

How to implement Versioning Exceptions.

V.Krishna Nandivada (IIT Madras) CS6848 26 / 25

