
Word-Interleaved Cache Architecture

Submitted in partial fulfillment of

the requirements for the degree of

Master of Science (by Research)

in

VLSI and Embedded Systems

by

Tavva Venkata Kalyan

Roll No. 200642004

kalyan tv@research.iiit.ac.in

Center for VLSI and Embedded Systems Technologies

International Institute of Information Technology

Hyderabad, A.P., INDIA.

July, 2009

©2009 - Tavva Venkata Kalyan

All rights reserved.

INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY

Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Word-Interleaved Cache Archi-

tecture” by Tavva Venkata Kalyan, has been carried out under my supervision and is not

submitted elsewhere for a degree.

Date Advisor: Madhu Mutyam

Abstract

The proliferation of nanometer technologies with ever decreasing geometric sizes

have led to proportionally unprecedented levels of system-on-a-chip (SOC) integration. Em-

bedding a multitude of processor cores has become a widespread design practice due to its

advantages of highly reduced time-to-market, lower design cost, and easily reprogrammable

implementations. Yet, increased silicon integration, together with increased clock frequen-

cies, has led to proportional increases in terms of power. Consequently, techniques for

minimizing system power/energy consumption are of significant importance for achieving

high-product quality.

On-chip caches play a major role in overall system performance. Being a part of the

memory hierarchy, cache memory in the system has become a critical component for high

performance. Though caches improve performance, they are also the major contributors

to the system-wide power consumption. The memory hierarchy of a system can consume

up to 50% of microprocessor system power. In the advanced process technologies even

though static power dissipation due to the leakage takes an increasing fraction of total

power dissipation in processors, dynamic power consumption is still an important factor in

low-power/energy-efficient design techniques.

Motivated by the fact that at most one word is being read on a hit and no word on

a miss, in this thesis we propose a novel energy-efficient cache architecture, namely, word-

interleaved (WI) cache. Unlike the conventional set-associative caches, where cache line data

belong to a single cache way, in the WI cache, cache line data are uniformly distributed

among different cache ways in such a way that each cache way gets a portion of the cache line

data. This distribution provides an opportunity to activate/deactivate the cache ways based

on the offset of the requested address, thus minimizing the overall cache access energy. By

experimental validation, we showed that the WI cache architecture, without incurring any

performance loss, saves 66.4% and 58% dynamic energy over a 16KB 4-way set-associative

conventional cache with 32B cache lines for instruction and data caches, respectively. With

negligible area overhead, WI cache can be implemented easily as it does not change the

internal RAM structure.

iv

Dedicated to my parents

v

Acknowledgments

My thanks go first to my advisor, Madhu Mutyam, for the support, inspiration,

and helpfulness he has showed me over the course of my graduate education. I have never

met anyone with a keener eye for detail, and all of my research has benefitted greatly

from his amazing ability to read not only for content but also for interesting new research

directions. I can never thank him enough for all of the care and attention he has shown

to me, for which I am truly grateful. Conversations with him were invaluable in helping

me stay on track with my work and progress towards graduation. He is not only a good

researcher but also a good person, I have learnt a lot from him as a person, I could not have

had a better role model.

My parents have had a great influence on me. Where would I be without them?

Without their warmth and love I wouldnot have reached this stage. They have been a great

source of inspiration and courage for me. Because of their enormous support I am able to

pursue a career and field of my choice.

I would like to express how much I have enjoyed working with Abid and Nayan

this 2 years. Their abundant good cheer and positive outlook made the working experience

tremendously pleasurable, and I specially thank them for helping me to drive out the ghost

of programming inside me. I have had many simulating conversations with Anuj, Mahesh

and Keerthiram. They have been of great help for me to develope a better perspective

about all things around me.

My special thanks go to Raghavendra, our senior. He has been very supportive

and helpful during his stay at IIIT-H. He has helped me a lot with understanding of basics

of computer architecture, cache and simplescalar tool. I would also like to thank all my

batchmates, Abu, Prashanth Pai, Rohit, Chandan, Raju, Rahul, Sai Satyanarayana, Pankaj

and Vinayak for making my journey more fun. Also, thanks to all the M.Tech friends of

my batch for making my stay at IIIT-H an enjoyable experience.

vi

Whatever you do will be insignificant, but it is very important that you do it.

Mahatma Gandhi

vii

Contents

Title Page . i
Abstract . iv
Dedication . v
Acknowledgments . vi
Table of Contents . viii
List of Figures . x
List of Tables . xii

1 Introduction 1
1.1 Need for Low-power/Energy-efficient Design Techniques 1
1.2 Sources of Power Consumption . 3

1.2.1 On-Chip Cache . 4
1.3 Contributions . 5
1.4 Scope of thesis . 5

2 Prior Work 6

3 Experimental Setup 11
3.1 SimpleScalar Tool . 11
3.2 SPEC2000 Benchmarks . 12
3.3 CACTI Tool . 13
3.4 Predictive Technology Model . 14

4 Word-Interleaved Cache Architecture 15
4.1 Conventional cache . 15
4.2 Motivation . 17
4.3 Word-Interleaved (WI) cache . 17
4.4 Energy modeling . 19

4.4.1 Cache hit . 21
4.4.2 Cache miss . 21

4.5 Experimental Setup . 23
4.6 Effectiveness of the WI Cache Architecture 24

4.6.1 On dynamic energy consumption . 24
4.6.2 On cache performance and area . 27

viii

Contents ix

4.7 Sensitivity analysis . 28
4.8 Comparison of the WI cache architecture with other cache techniques . . . 31

4.8.1 Exploiting fast hits . 31
4.8.2 Considering subbanking . 34
4.8.3 Phased-access cache . 38
4.8.4 Exploiting drowsy mechanism . 39

5 Conclusions and Future Work 44

Bibliography 46

List of Figures

1.1 Power consumption trends in SOC designs as predicted by ITRS-2005 [22]. 2

4.1 Conventional cache. 16
4.2 WI cache. 18
4.3 Offset decoder. 19
4.4 Percentage of reads and writes to the total number of accesses in the L1

instruction cache. 25
4.5 Percentage of reads and writes to the total number of accesses in the L1 data

cache. 25
4.6 Dynamic energy savings of the WI L1 data cache over the conventional L1

data cache. 26
4.7 Benchmark-wise L1 cache hit rates for the WI cache. Note that the conven-

tional cache has also the same hit rate as that of the WI cache. 27
4.8 Average dynamic energy savings of the WI cache over the conventional cache

for L1 instruction cache with different associativity and cache sizes, with 32B
cache lines. 28

4.9 Average dynamic energy savings of the WI cache over the conventional cache
for L1 data cache with different associativity and cache sizes, with 32B cache
lines. 28

4.10 Average dynamic energy savings of the WI cache over the conventional cache
for different associativity and blocksizes for a 32KB L1 instruction cache. 29

4.11 Average dynamic energy savings of the WI cache over the conventional cache
for different associativity and blocksizes for a 32KB L1 data cache. 29

4.12 L1 instruction and data cache miss rates for a 2-way 32KB cache with dif-
ferent cache line sizes. Note that miss rate is same for both conventional and
WI caches. 30

4.13 Benchmark-wise fast hits percentage for both instruction and data caches,
considering both conventional and WI architectures. 32

4.14 Energy savings of the WI L1 data cache over the conventional L1 data cache
considering fast hits. 33

4.15 Benchmark-wise performance degradation for the WI L1 data cache with fast
hit mechanism over the conventional L1 data cache with fast hit mechanism. 33

x

List of Figures xi

4.16 Subbank division and arrangement in the data array, considering conven-
tional and WI cache architectures. 35

4.17 Subbanks 1, 2, 3 and 4 and arrangement of words in them when the baseline
cache outputs 32B of data. 37

4.18 Benchmark-wise energy savings of the WI cache and phased-access cache over
the conventional L1 data cache. 38

4.19 Benchmark-wise performance degradation of the WI cache and phased-access
cache over the conventional L1 data cache. 39

4.20 Impact of update window size on performance and the percentage of cache
lines in drowsy mode for both the conventional and WI drowsy L1 data
caches. 40

4.21 Benchmark-wise IPC degradation for both the conventional and WI drowsy
caches with respect to the base case with an update window size of 2000
cycles. 42

4.22 Benchmark-wise leakage energy savings for both the conventional and WI
drowsy caches with respect to the base case with an update window size of
2000 cycles. 42

List of Tables

3.1 Base processor configuration . 12
3.2 Selected benchmarks in SPEC CINT2000 Suite. 13
3.3 Selected benchmarks in SPEC CFP2000 Suite. 14
3.4 Benchmarks used for experiments . 14

4.1 Notation used in the energy modeling equations. 20
4.2 Dynamic energy values per access in both the conventional and WI L1 cache

architectures. 24

xii

Publications in course of this thesis

1. “Word-Interleaved Cache: An Energy Efficient Data Cache Architecture”,
T. Venkata Kalyan, Madhu Mutyam. In the proceedings of ACM/IEEE Inter-
national Symposium on Low Power Electronics and Design (ISLPED), 2008,
pp. 265-270.

2. “Word-Interleaved Cache: An Energy Efficient Data Cache Architecture”,
T. Venkata Kalyan, Madhu Mutyam. Communicated to ACM Transactions on
Architecture and Code Optimization (TACO), 2009.

Publications related to the area of energy-efficient designs

1. “Exploiting Variable Cycle Transmission for Energy-Efficient On-Chip In-
terconnect Design”, T. Venkata Kalyan, Madhu Mutyam and P. Vijaya Sankara
Rao. In the proceedings of IEEE International Conference on VLSI Design
(VLSID), 2008, pp. 235-240.

xiii

Chapter 1

Introduction

Since the invention of the transistor, decades ago, through the years leading to

the 1990’s, power dissipation, though not entirely ignored, was of little concern. Greater

emphasis was on performance and miniaturization. With much of the research efforts of

the past directed toward increasing the speed of digital systems, present-day technologies

possess computing capabilities that make possible powerful personal workstations, sophis-

ticated computer graphics, and multimedia capabilities. High-speed computation has thus

become the expected norm from the average user, instead of being the province of the few

with access to a powerful mainframe. Historically, applications powered by battery-pocket

calculators, hearing aids, implantable pacemakers, portable military equipment used by in-

dividual soldier and, most importantly, wrist watches-drove low-power electronics. In all

such applications, it is important to prolong the battery life as much as possible. These

portable battery-powered applications of the past were characterized by low computational

requirement.

1.1 Need for Low-power/Energy-efficient Design Techniques

Although the traditional mainstay of portable digital applications has been in low-

power, low-throughput uses, there are an ever-increasing number of portable applications

requiring low power and high throughput. People are beginning to expect to have access to

same computing power, information resources, and communication abilities when they are

travelling as they do when they are at their desk. For example, notebook and laptop com-

puters, representing the fastest growing segment of the computer industry, are demanding

1

Chapter 1: Introduction 2

Figure 1.1: Power consumption trends in SOC designs as predicted by ITRS-2005 [22].

the same computation capabilities as found in desktop machines. These portable appli-

cations require huge processing power. Conventional nickel-cadmium battery technology

only provides a 26W of power for each pound of weight [11] and projected improvement

in battery performance is no way comparable to the present demand of power in portable

devices. Another important consideration, particularly in portable applications, is that

many computation tasks are likely to be real-time; the radio modem, speech and video

compression, and speech recognition all require computation that is always at near-peak

rates. Conventional schemes for conserving power in laptops, which are generally based on

power-down schemes, are not appropriate for these continually active computations. Hence

advances in the area of low-power microelectronics are required to make the vision of the

inexpensive and high processing portable application a reality.

Even when power is available in nonportable applications, the issue of low-power

design is becoming critical. To continue to improve the performance of the circuits and to

integrate more functions into each chip, feature size has to continue to shrink. Figure 1.1

shows the trend for total chip power for power efficient System On Chip (SOC) designs,

as predicted by International Technology Roadmap for Semiconductors (ITRS)-2005 [22].

In deep sub-micron region, each new process has inherently higher dynamic and leakage

current density with minimal speed advantage. As a result the magnitude of power per unit

Chapter 1: Introduction 3

area is growing, by the end of year 2010 the power density on the chip might equal that of a

rocket nozzle (as predicted by Pat Gelsinger, Intel) and the accompanying problem of heat

removal and cooling is worsening. Difficulty in providing adequate cooling might either add

significant cost to the system or provide a limit on the amount of functionality that can be

provided. Circuit cooling requirements also affect package costs and circuit reliability [33].

Thus, it is evident that methodologies for the design of high-throughput, low-power digital

systems are needed.

1.2 Sources of Power Consumption

There are three major sources of power dissipation in digital CMOS circuits, which

can be summarized in the following equation:

Ptotal = pt(CL ∗ V ∗ Vdd ∗ fclk) + Isc ∗ Vdd + Ileakage ∗ Vdd (1.1)

The first term represents the switching component of power, where CL is the loading ca-

pacitance, fclk is the clock frequency, and pt is the probability that a power consuming

transition occurs (the activity factor). In most of the cases the voltage swing V is the same

as the supply voltage Vdd; however, in some logic circuits (ex. single gate pass-transistor

implementations) the voltage swing on some internal nodes may be slightly less. It can

be seen that the first term indicates logic transitions. As the “nodes” in a digital CMOS

circuit transition back and forth between the two logic levels, the parasitic (or loading)

capacitances are charged and discharged. Current flows through the channel resistance of

the transistors, and electrical energy is converted into heat and dissipated away. The second

term is due to the direct-path short circuit current Isc, which arises when both the NMOS

and PMOS transistors are simultaneously active, conducting current directly from supply

to ground [38]. With input(s) to the gate stable at either logic level, only one of the two

transistors conduct and no short circuit current flows. But when the output of a gate is

changing in response to change in input(s), both the transistors conduct simulatenously for

a brief interval. The duration of the interval depends on the input and the output transition

(rise or fall) times and so does the short circuit dissipation. Finally, leakage current Ileakage,

which can arise from substrate injection and subthreshold effects, is primarily determined

by fabrication technology considerations.

The first two sources of power dissipation in CMOS circuits are related to tran-

Chapter 1: Introduction 4

sitions at gate outputs and are therfore collectively referred to as dynamic dissipation. In

contrast, the third source of dissipation, the leakage current flows when the input(s) to, and

therefore the outputs of, a gate are not changing. This is called static dissipation. In the

advanced process technologies, even though static power dissipation due to leakage takes

an increasing fraction of total power in processors, dynamic power consumption is still an

important factor in low power design techniques. While the problem is often stated in

terms of power dissipation, the real goal is to minimize energy dissipation in the presence

of performance constraints [36]. When the processing rate is a fixed constraint, the energy

and power metrics are interchangeable. Thus, the metric to minimize is really energy-delay

product.

In order to minimize the power consumption in a chip, in this thesis we concentrate

on one of the important components of high performance systems, on-chip cache.

1.2.1 On-Chip Cache

On-chip cache memory in modern computer systems has become a critical com-

ponent for high performance. By exploiting locality principle, cache memories can reduce

the memory access latency, which in turn helps in improving the overall system perfor-

mance. For high clock frequencies, these on-chip caches are implemented using arrays of

densely packed static random access memory (SRAM) cells. As cache memories improve

the system performance, modern computer systems employ multi-level cache organizations.

Several cache organizations have been proposed in literature which include direct-mapped,

set-associative, and fully-associative caches. In a n-way set-associative cache, the cache is

partitioned into n ways so that data can be placed in one of the n ways. Direct-mapped and

fully-associative caches are special cases of n-way set-associative caches, where n is equal

to either 1 or the number of sets in the cache, respectively.

In direct-mapped caches, as data is placed in specific locations based on a fixed

mapping associated with the cache, the access latency is small as compared to the same-

sized associative cache organizations. Though the access latency of direct-mapped caches is

small, mapping data to fixed locations can increase the conflict miss rate [19]. Associative

cache organizations can minimize the conflict miss rate as data can be placed in one of the

many locations. In order to minimize the effective access latency for a n-way set-associative

cache, all the n ways are accessed in parallel and data is read/written from/to one of the

Chapter 1: Introduction 5

ways, which is selected by using a multiplexer. Accessing all the ways simultaneously for

each cache read/write request results in high cache access energy consumption. Also, as

multiplexer delay is in the critical path, the access latency of set-associative caches is higher

compared to the direct-mapped cache access latency.

Though on-chip cache is an important component in modern processors for achiev-

ing high performance, because of its large area and high access frequency, it also becomes

a major power consumer in processors. For instance, caches contribute nearly 16% and

43%, respectively, of the total processor power in Alpha 21264 [9] and StrongARM-110 [31]

processors. Consequently, caches are the most attractive targets for power minimization.

1.3 Contributions

A low dynamic power (or energy) cache design can be viewed as one with mini-

mal internal switching activity during an access. The activity can be attributed to charg-

ing/discharging of wordlines and bitlines, and firing of sense amplifiers. In this thesis we pro-

pose an energy-efficient cache architecture, namely, the Word-Interleaved cache wherein we

eliminate redundant accesses to data arrays by offset based decoding mechanism. Through

this method all the accesses in instruction/data cache can be directed to the target cache

way immediately. This approach does not require any special circuitry internal to cache

RAM, an advantage in industry for easy implementations.

1.4 Scope of thesis

Following this introduction, chapter 2 surveys the related work. Chapter 3 gives

the experimental framework. Then, the main body of this dissertation delves into the

important component chosen for low power/energy consumption:

In Chapter 4 we explain our proposed energy-efficient cache architecture, namely,

Word-Interleaved Cache. An exhaustive analysis for a baseline cache configuration is pro-

vided, followed by sensitivity analysis considering different cache size, blocksize and asso-

ciativity. We then compare/study our WI cache architecture with other cache techniques

like cache exploiting fast hits, subbanking, phased-access cache and drowsy cache.

Finally, chapter 5 reviews the contributions of this dissertation and outlines future

directions for this research.

Chapter 2

Prior Work

Identifying on-chip cache as an important component of high performance sys-

tems, in this chapter we present the existing low-power/energy-efficient designs available

for caches.

In phased-access cache [18], all the tag arrays are accessed first followed by an

access to a data array corresponding to the matching tag (if any). Though, the phased-

access cache minimizes power consumption, it requires more time for every access, degrading

the performance.

In predictive sequential associative cache [10], several prediction mechanisms are

proposed to select a cache way in a set-associative data cache. By considering 2-way set-

associative caches, the authors showed that their technique yields low miss rate as compared

to a conventional 2-way set-associative caches and low cycle time as compared to the same

sized direct-mapped caches. In way-predicting set-associative caches [21, 35], both the tag

and data array of a predicted cache way are accessed first. If a misprediction occurs, the

rest of the ways are accessed in parallel in the next cycle.

Reactive-associative cache design [8] uses both selective direct mapping and way

prediction. As way prediction accuracy for data caches is very low, the authors exploit

selective mapping mechanism to place most of the blocks in direct-mapped positions that

are accessed first and reactively displacing the conflicting blocks to set-associative positions.

Using the selective mapping and way prediction, it is shown that the performance of 4-

way set-associative cache is close to that of the same-sized direct-mapped cache. But this

technique requires extra time whenever the access to the first cache way results in a miss.

In access-mode-prediction cache [48], cache accesses can be adaptively switched between the

6

Chapter 2: Prior Work 7

way-prediction [21] and the phased accessing [18] modes. In the case of predicted cache

hits, the way-prediction scheme determines the desired way and probes only that way. In

the case of predicted misses, the phased scheme accesses all tags first, then probes the

appropriate way. The proposed predictor uses a global-access history register and a global

pattern history table to achieve reasonably high prediction accuracy.

Few cache design techniques have been proposed in which cache configurations

can be tuned to a particular application. In selective cache ways [7] technique, cache ways

are selectively activated based on the application’s need. By doing so, power consumption

can be minimized, but profiling is required to know the number of cache ways to be selec-

tively activated. Accounting cache [14] is based on a re-sizable selective cache ways. The

accounting cache first accesses part of the cache ways of a set-associative cache, known as

a primary access. If there is a miss, the cache accesses the other ways, known as a sec-

ondary access. A swap between the primary and secondary accesses is needed whenever

there is a miss in the primary and a hit in the secondary access. Energy is saved only on a

hit during the primary access. In [45], the authors proposed a cache architecture wherein

way-concatenation, way-shutdown, and line-concatenation techniques are used to configure

associativity, cache size, and cache line size, respectively. Tuning these cache parameters

to a program is a cumbersome task left for designers. So, in [44] the authors introduced

on-chip hardware implementing an efficient cache tuning heuristic that can automatically,

transparently, and dynamically tune the cache to an executing program.

Pseudo set-associative cache (PSAC) [20] is a set-associative cache having a tag

array and a data array similar to a direct-mapped cache. Upon a miss, a specific index bit

is flipped and a second access is made to the cache using the new index. So, each location in

the cache is part of a pseudo-set consists of itself and the location obtained by flipping the

index bit. PSAC achieves the speed of a direct-mapped cache and the hit rate of a 2-way

cache, at the expense of slower access time than a 2-way cache due to sequential accessing

of the cache ways.

In low-power way-selective cache [23], a specialized replacement policy is adopted

to allocate cache lines with different least significant four bits of tag address in a set. This

restriction can limit cache performance whenever different cache lines which belong to the

same set with the same least significant four tag bits are encountered, which is indeed a

realistic case. In way-halting cache [46], a small fully associative cache is maintained to

store the lowest-order tag bits of all the cache ways. The fully associative cache is searched

Chapter 2: Prior Work 8

in parallel with the set-index decoding and if a mismatch is found in the fully associative

cache search, further access to the main cache is halted. Dynamic zero-sensitivity scheme

[12] reduces average cache power consumption by preventing bitlines from discharging in

reading a ‘0’. It requires a special hardware for gating the bitlines and sense amplifiers.

To eliminate redundant accesses to cache tag and data arrays, tag encoding tech-

nique is proposed in [47]. It places several registers in the cache to store the recently accessed

address tags, and a register for each tag to store its state. Before starting an access, the

tag states in the target cache set are checked to determine which way(s) should be accessed

and which should not. This technique achieves energy savings with small increase in cache

access time. In order to minimize power consumption in tag arrays of both instruction

and data caches, tag compression for low-power embedded processors is proposed in [34].

This is also an application-specific customization of the cache. Compile-time algorithms

are proposed for identifying the minimal number of tag bits for completely distinguishing

the set of tags accessed by an application loop. By utilizing very few tag bits within the

major application loops, a significant amount of energy dissipation in the tag arrays can be

eliminated.

Exploiting small buffers between the L1 data cache and processor to reduce the

data cache activity is explored in [39, 27]. As buffer access energy is small compared to a

data cache access energy, as long as processor requests hit in the buffer, these techniques

achieve significant energy savings. But a buffer miss requires an additional clock cycle

to access the main cache, leading to performance degradation. A technique to alleviate

this degradation for instruction cache is proposed in hotspot cache [43]. In [16], a number

of low power techniques such as extra buffers between processor and the L1 cache, sub-

banking of the cache, and bit-line partitioning, are proposed. Similar to the filter cache

[27] mechanism, a low-power cache design is proposed in [13] by exploiting two-level filters

between the processor and L1 cache.

Victim cache [30] design is proposed to reduce the number accesses to the L2 cache.

In [32], a technique is proposed to reduce the number of data cache accesses by modifying

the Load/Store queue (LSQ) design to retain previously accessed data values on both loads

and stores after the corresponding memory access instruction has been committed. Hit in

the modified LSQ is faster and also avoids a cache access hence, reducing the total energy

spent on load instructions and improving the energy-delay product.

Chapter 2: Prior Work 9

Several techniques have been proposed to reduce leakage energy in caches. Cache

decay technique [24] uses a time based strategy, wherein by exploiting the generational

behaviour of cache line usage, a cache-line is turned-off if it is not likely to be used. The

drawback of this technique is that if a cache-line is turned-off and is needed later, it must

be refetched from a lower level memory, which incurs both additional dynamic energy

consumption and performance degradation. Data-retention gated-ground [5] cache retains

the data in the cache line while reducing the leakage by using gated-Ground transistor. But

it is not preferable for L1 caches because of the high wake-up penalty between the active

mode and the leakage saving mode.

An efficient cache leakage minimization technique, Drowsy cache [15] technique

lowers the supply voltage to a level near the threshold voltage. When a cache line is in

the leakage saving mode (or drowsy mode), data will be retained but it cannot be accessed

for a read or a write operation. Due to temporal locality, for reasonably long periods,

most of the cache lines are unused. Thus, by putting infrequently used cache lines into the

drowsy mode and keeping frequently accessed cache lines in the active mode, the drowsy

cache reduces much leakage energy. Since the expected wake-up penalty is small (1 cycle

in the 70nm process technology), these leakage energy savings are obtained without signif-

icant performance degradation. Super-drowsy [26] technique is a circuit refinement of the

drowsy technique. In this technique, in order to alleviate the interconnect routing space,

the multiple supply voltage sources are replaced by a single-Vdd cache line voltage controller

with a Schmitt trigger inverter. This technique can achieve significant leakage savings with

negligible performance penalty.

A word-interleaved cache for a clustered VLIW processor is proposed in [17],

wherein following a fixed mapping, a cache line is distributed among different clusters.

Each line of a cache bank holds some words of the cache line. In this cache organization,

as each sub-cache line will reside in only one cluster, there is no data replication at all, but

the tags are replicated in all cache clusters. Effective instruction scheduling techniques are

proposed to exploit the interleaving property for improving the IPC.

Most of the previous approaches trade off something or the other to reduce power

(or energy) consumption. A phased-access cache and low-power way-selective cache trade

performance for energy. On the other hand, predictive sequential associative cache, way-

predicting set associative caches, reactive associative cache, access-mode prediction cache,

accounting cache, pseudo set-associative cache and filter cache do not have fixed hit-latencies

Chapter 2: Prior Work 10

and hence increase non-determinism in latencies for instruction scheduling, leading to not

only performance degradation but also energy wastage due to squashing and re-issuing of the

instructions. Few of the above techniques like selective cache ways, way-concatenation, self-

tuning cache [44] and tag compression need either profiling or compiler (software) support.

For self-tuning cache, dynamic zero sensitivity scheme, way-halt cache and tag encoding

techniques special circuitry is needed leading to area overhead.

Orthogonal to the existing works, by exploiting word-interleaving property, we now

propose a novel low dynamic energy cache architecture for both instruction and data caches,

which is software independent, has fixed hit time, has no performance loss, and negligible

area overhead. In our new cache architecture, a cache line is uniformly distributed among

the different cache ways in such a way that each cache way holds some words of the cache

line. Whenever there is a request, we apply offset decoding to access only the required cache

way thereby reducing the dynamic energy consumption significantly. We then study the

effectiveness of the WI architecture over the conventional cache architecture by considering

features such as fast hit mechanism [39], wherein a buffer is used to store most recently

accessed cache line, subbanking [42, 16, 6] and drowsy mechanism [15] for leakage energy

minimization. We also compare our WI architecture with the phased-access cache [18],

which is an energy-efficient cache design.

Chapter 3

Experimental Setup

In order to validate our proposed techniques, we have simulated the processor using

SimpleScalar tool and simulated SPEC2000 benchmarks on that processor. Our cache has

been modeled using the CACTI tool and the transistor parameters have been obtained using

the Predictive Technology Model. Given below are brief details of the tools, benchmarks

and models used in evaluation.

3.1 SimpleScalar Tool

SimpleScalar [3] was created by Todd Austin. The SimpleScalar tool set is a sys-

tem software infrastructure used to build modeling applications for program performance

analysis, detailed microarchitectural modeling, and hardware-software co-verification. Us-

ing the SimpleScalar tools, one can build modeling applications that simulate real programs

running on a range of modern processors and systems. The tool set includes sample simula-

tors ranging from a fast functional simulator to a detailed, dynamically scheduled processor

model that supports non-blocking caches, speculative execution, and state-of-the-art branch

prediction. The SimpleScalar tools are used widely for research and instruction.

SimpleScalar simulators can emulate the Alpha, PISA, ARM, and x86 instruction

sets. The tool set includes a machine definition infrastructure that permits most archi-

tectural details to be separated from simulator implementations. Complex instruction set

emulation (e.g., x86) can be implemented with or without microcode, making the Sim-

pleScalar tools particularly useful for modeling CISC instruction sets. In our experiments,

we have emulated Alpha instruction set. The configuration of the processor which we have

considered is given in Table 3.1.

11

Chapter 3: Experimental Setup 12

Parameter Value
Issue Width 4 instructions/cycle (out of order)
RUU Size 64 instructions
LSQ Size 32 instructions

Branch Prediction Bimodal with 2K entries
BTB 512 entries,4-way

Misprediction Penalty 18 cycles
of ALUs 4 integer and 4 floating point

of Mul/Div units 1 integer and 1 floating point
L1 D-cache 16Kbyte, 4-way (LRU), 32byte blocks, 2 cycle latency
L1 I-cache 16Kbyte, 4-way (LRU), 32byte blocks, 1 cycle latency
L2 cache Unified, 256Kbyte, 4-way (LRU), 64byte blocks, 12 cycle latency
Memory 160 cycles
ITLB 16-entry, 4K block, 4-way, 30 cycle miss penalty
DTLB 32-entry, 4K block, 4-way, 30 cycle miss penalty

Table 3.1: Base processor configuration

3.2 SPEC2000 Benchmarks

SPEC is the acronym of Standard Performance Evaluation Corporation. It was

formed to establish, maintain and endorse a standardized set of relevant benchmarks that

can be applied to the newest generation of high-performance computers. SPEC CPU2000

is the industry-standardized CPU-intensive benchmark suite. SPEC designed CPU2000 to

provide a comparative measure of compute intensive performance across the widest practical

range of hardware. The implementation resulted in source code benchmarks developed

from real user applications. These benchmarks measure the performance of the processor,

memory and compiler on the tested system.

SPEC CPU2000 is made up of two subcomponents that focus on two different

types of compute intensive performance:

• CINT2000 for measuring and comparing compute-intensive integer performance.

• CFP2000 for measuring and comparing compute-intensive floating point performance.

We have used 12 SPEC CPU2000 benchmarks to test our designs. Of these, 6 are integer

benchmarks and rest are floating point. Tables 3.2 and 3.3 contain the descriptions of the

benchmarks. More detailed descriptions on the benchmarks (with reference to papers, web

sites, etc.) can be found in the individual benchmark directories in the SPEC benchmark

Chapter 3: Experimental Setup 13

Name of Programming General Description
Benchmark Language Category
bzip2 C Compression Data compression

program.
gcc C C Programming Runs a complier for

language complier Motorola 88100.
mcf C Optimization vehicle scheduling

problems.
parser C Word Processing Analyzes an English

sentence.
perlbmk C PERL Programming Runs four perl

Language script files.
twolf C Place and Route Does placement and

Simulator routing microchips

Table 3.2: Selected benchmarks in SPEC CINT2000 Suite.

tree [4]. For each benchmark we simulated the sequence of instructions which capture the

core repetitive phase of the program, as given in Table 3.4 [25]. These benchmarks are

chosen for their high L1 miss rates. Table 3.4 also lists the number of instructions skipped

to reach the phase start (FFWD) and the number of instructions simulated (RUN).

3.3 CACTI Tool

In order to model the SRAM based cache structure, we have used CACTI tool.

CACTI [2] is an integrated cache access time, cycle time, area, leakage, and dynamic power

model. By integrating all these models together, one can have confidence that tradeoffs

between time, power and area are all based on the same assumptions and, hence, are

mutually consistent. CACTI is intended for use by computer architects to better understand

the performance tradeoffs inherent in different cache sizes and organizations. With the

internal circuits chosen, the model gives estimates that are within 10% of Hspice results.

CACTI 4.1 [40] is the latest version of CACTI to be released. This new version adds a

model for leakage power and updates the basic circuit structure and device parameters to

better reflect the advances in scaling semiconductors (in the last ten years).

Chapter 3: Experimental Setup 14

Name of Programming General Description
Benchmark Language Category

Computational Fluid Solution of five
applu Fortran 77 Dynamics and coupled parabolic/

Physics elliptic PDE’s
art C Image Recognition Theory 2 (ART 2)

and Neural neural network is
Networks used to recognize

objects in
a thermal image.

Simulation of seismic simulates the
equake C wave propagation in propagation of

large basins elastic waves
galgel Fortran 90 Computational Fluid Calculates Grashof

Dynamics no. of the convective
flow in liquids.

mesa C 3-D Graphs Library OpenGL library
mgrid Fortran 77 Multi-grid solver Computes 3D

potential field.

Table 3.3: Selected benchmarks in SPEC CFP2000 Suite.

SPEC INT2000 FFWD RUN SPEC FP2000 FFWD RUN
bzip2 744M 1.0B applu 267M 650M
gcc 2.367B 300M art 2.2B 200M
mcf 5.0B 200M equake 4.459B 200M

parser 3.709B 200M galgel 4.0B 200M
perlbmk 5.0B 200M mesa 570M 200M

twolf 511M 200M mgrid 550M 1.06B

Table 3.4: Benchmarks used for experiments

3.4 Predictive Technology Model

In order to calculate the transistor parameters like width (W), length (L), threshold

voltage (Vth), etc., we have used the Predictive Technology Model (PTM). PTM provides

accurate, customizable, and predictive model files for future transistor and interconnect

technologies. These predictive model files are compatible with standard circuit simula-

tors, such as SPICE, and scalable with a wide range of process variations. With PTM,

competitive circuit design and research can start even before the advanced semiconductor

technology is fully developed.

Chapter 4

Word-Interleaved Cache

Architecture

Realizing the fact that on-chip caches are one of the important components in

modern microprocessors, in this chapter1 our energy-efficient cache architecture is intro-

duced and explained in detail. Section 4.1 presents the working of the conventional cache

architecture, considering a baseline configuration. Basic observation and motivation for

the proposed architecture are put-forward in Section 4.2. Our word-interleaved cache is

presented in Section 4.3, followed by complete energy modeling in Section 4.4. Section 4.5

gives brief experimental setup. Exhaustive analysis considering the baseline configuration is

presented in Section 4.6. Section 4.7 continues the discussion providing sensitivity analysis

considering different cache sizes, associativity and cache line sizes. In Section 4.8, we study

our WI cache architecture in comparison with other cache techniques like cache exploiting

fast hits, subbanking, drowsy cache and phased-access cache.

4.1 Conventional cache

As a baseline configuration, we consider a 16KB cache which is 4-way set-associative

with line size of 32B2. The reason for considering a 4-way set associative cache as baseline

is that four ways yield a sufficiently good hit rate for most of the applications. Also, high

1Part of this chapter has been published as [41]. And most of the work has been communicated to ACM
Transactions on Architecture and Code Optimization (TACO) journal.

2For basics on cache memories the reader is requested to go through [19].

15

Chapter 4: Word-Interleaved Cache Architecture 16

Figure 4.1: Conventional cache.

associativity caches already exist in some of the commercial processors. For example, the

Intel Pentium 4 processor exploits 4-way L1 caches along with 8-way L2 cache.

The conventional cache architecture (as shown in Figure 4.1) using the baseline

configuration includes a set-decoder, precharge circuits for both tag and data arrays, word-

line drivers, four data arrays, four tag arrays, sense amplifiers, tag comparators, one multi-

plexer (data select mux), and output drivers. During a cache access the following sequence

of steps takes place: the index bits from a given address are sent to the set-decoder, which

then selects a cache set; The wordline of the selected set is strengthened by the wordline

drivers (typically, two back-to-back inverters); The wordline activates four blocks of the

selected set (one in each way); Four tags and four blocks are read out simultaneously using

the sense amplifiers; The tags are then compared with the tag of the given address using

comparators (one for each tag) for a hit; Data of the hit way are sent out through the output

drivers; Offset field is then used to extract the appropriate bytes from the selected block

of data. This conventional parallel access scheme used in set-associative caches has good

performance but is not optimized from energy consumption point of view. This is because,

all the data ways are activated eventhough the required data is present in a single way.

Chapter 4: Word-Interleaved Cache Architecture 17

4.2 Motivation

Our motivation for the word-interleaved (WI) cache design comes from the fact

that at most one word is being accessed on a cache hit and no word is accessed on a cache

miss. Whenever there is a request to the (instruction/data) cache, the processor accesses a

word of data from a location specified by the request. From the requested data’s address, if

we know the cache way in which the data is present, we can access only the required cache

way and eliminate the dynamic energy due to unnecessary access to other ways.

In the WI cache, data of a cache line are uniformly distributed among different

cache ways so that each cache way gets a portion of the cache line data. Cache line data

are distributed to all the cache ways uniformly in such a way that the first k words of the

line are available in the first cache way, the next k words are available in the second cache

way, and so on, and the last k words are available in the last cache way, where k = S/n

such that S is the cache line size in bytes and n is the associativity of the cache. With

such a cache organization, it is easy to find a cache way for a given address using the offset

of the address. We exploit the cache block distribution in the WI cache for the energy

minimization by considering the offset based address decoding mechanism.

4.3 Word-Interleaved (WI) cache

Word-interleaved (WI) cache architecture is shown in Figure 4.2. While in the

conventional cache architecture, all the words of a cache line are placed in contiguous

locations (as shown in Figure 4.1), in the WI cache, words of a cache line are uniformly

distributed among the different cache ways in such a way that the first 8B word (w1) is

available in the first cache way, the second 8B word (w2) is available in the second cache

way, the third 8B word (w3) is available in the third cache way, and the last 8B word (w4)

is available in the fourth cache way. In general, for a n-way set-associative cache with cache

line size as S bytes, we distribute the words of a cache line to all the cache ways in such a

way that the ith cache way gets data from (i−1)S
n bytes to (iS

n −1) bytes, where 1 ≤ i ≤ n.

From Figures 4.1-4.2, it is clear that all the words (w1, w2, w3, and w4) of a cache line (say

B1) are placed in a single way in the case of conventional cache, whereas in the WI cache,

all the w1’s of the four cache lines (B1, B2, B3, and B4) in a set are placed in way 0, all

w2’s are placed in way 1, and so on.

Chapter 4: Word-Interleaved Cache Architecture 18

Figure 4.2: WI cache.

With the above arrangement of data in the WI cache, when there is an read request

to the cache, both index and offset fields are decoded in parallel to determine the set and

the way, respectively, thus restricting the access to a single way. The offset decoder (shown

in Figure 4.3) is a simple 2 × 4 decoder, which requires the most significant two bits of

the offset as input. Offset decoding takes less time as compared to the index decoding.

Output of the offset decoder is used to select a cache way by enabling the corresponding

precharge circuit and sense amplifiers. Also the decoded values of the offset and index fields

are ANDed and the output is used to activate the wordline of the selected way. As words in

a selected cache line differ in their tag addresses, we perform tag comparison and send out

the selected word using the sense amplifiers and the output drivers. The least significant

three bits of the offset are used to extract the appropriate bytes from the selected word.

We concentrate only on the energy consumption in the data array as the data array

contributes significantly to the total energy consumption during a cache access. It can be

observed that since only one cache way is activated per access, our technique can reduce

Chapter 4: Word-Interleaved Cache Architecture 19

Figure 4.3: Offset decoder.

the energy consumption, eliminating the energy for activating the wordlines, bitlines, sense

amplifiers, and data select multiplexers in the other three ways. Though we use four small

data multiplexers (one for each way, each with 32 ∗ 8 input lines and 8 ∗ 8 output lines)

instead of a bulk mux (with 4 ∗ 32 ∗ 8 input lines and 32 ∗ 8 output lines) as in the baseline

cache, there is a significant reduction in the energy consumption of multiplexer because

only one of them is active per access.

During a write operation in the WI cache, as the data has to be written in all the

four ways (because of cache line distribution), the wordlines and bitlines of all the four ways

are activated. This results in more energy consumption for the WI cache architecture as

compared to the conventional cache architecture. However, in order to reduce the energy

overhead due to the sense amplifiers, during a write we activate the sense amplifiers of the

bitlines of only those words which need to be written. Though energy consumption for the

WI cache is more for a write operation as compared to the baseline cache, our technique

achieves significant energy savings as the number of writes into a L1 cache is very less when

compared to the number of read operations [19].

4.4 Energy modeling

In order to evaluate the effectiveness of the WI cache over the conventional cache

in terms of dynamic energy minimization, in this section, we give analytical equations for

dynamic energy consumption per cache access. Notation used in the analytical equations

is shown in Table 4.1.

Chapter 4: Word-Interleaved Cache Architecture 20

Notation Meaning
Ed dec energy consumption in the data array decoder
Et dec energy consumption in the tag array decoder
Ed rd sum of energy consumptions due to wordlines and bitlines of a single data

array when the array is being accessed for a read
Ed wr sum of energy consumptions due to wordlines and bitlines of a single data

array when the array is being accessed for a write
Et rd sum of energy consumptions due to wordlines and bitlines of a single tag

array when the array is being accessed for a read
Et wr sum of energy consumptions due to wordlines and bitlines of a single tag

array when the array is being accessed for a write
Ed SA blk energy consumption values in sense amplifiers of a data array when a

cache line is accessed
Ed SA 4B energy consumption values in sense amplifiers of a data array when a

4B word is accessed
Et SA single tag way sense amplifier energy consumption
Emux cc energy consumption in bulky multiplexer in the conventional cache
Emux wi energy consumption in a single small mux in the WI cache
Ecomp energy consumption for comparison of tag bits of all the ways
Eopd blk output driver energy consumption when a cache line is accessed
Eopd word output driver energy consumption when a word of data is accessed
Eopd 4B output driver energy consumption when a 4B data is accessed
ECC total dynamic energy consumption per access in the conventional cache
EWI total dynamic energy consumption per access in the WI cache
Et 1way rd energy consumption to read a single tag array
Et 1way wr energy consumption to write a single tag array
Et 4ways energy consumption in tag array to access all the four ways

Table 4.1: Notation used in the energy modeling equations.

Chapter 4: Word-Interleaved Cache Architecture 21

4.4.1 Cache hit

To start with, let us consider an access to the L1 cache which resulted in a hit.

Now we have two cases, the access can be for reading or writing data.

• Read hit:

ECCRH
= Et 4ways + Ed dec + 4 ∗ (Ed rd + Ed SA blk) + Emux cc + Eopd 4B (4.1)

EWIRH
= Et 4ways + Ed dec + Ed rd + Ed SA blk + Emux wi + Eopd 4B (4.2)

where Et 4ways is given by

Et 4ways = Et dec + 4 ∗ (Et rd + Et SA) + Ecomp

It is clear from Equations (4.1) and (4.2) that whenever there is a read hit in the

cache, the WI cache saves dynamic energy of three data ways. Also the multiplexer

energy is reduced significantly since only one small mux is active in the WI cache to

that of a bulk mux in the conventional cache.

• Write hit:

ECCW H = Et 4ways + Ed dec + Ed wr + Ed SA 4B (4.3)

EWIW H
= Et 4ways + Ed dec + Ed wr + Ed SA 4B (4.4)

From the above equations, we know that both the conventional and WI caches con-

sume same amount of energy for all writes which hit in the cache.

4.4.2 Cache miss

When an access to the L1 cache results in a miss, a cache line in a given set is

selected as a victim following a replacement algorithm. If the victim line is valid and the

dirty bit is set, we writeback the victim line to the lower level cache and replace it with the

requested line (taken from the lower level cache). But if the dirty bit of the victim line is

not set, we directly replace the victim line with the requested line. The access that resulted

in a miss can be either a read or a write.

Here we have four possibilities: a read miss with the victim line as dirty and clean

and a write miss with the victim line as dirty and clean.

Chapter 4: Word-Interleaved Cache Architecture 22

• Read miss with dirty victim line:

ECCRMDV
= Et 4ways + Ed dec + 4 ∗ (Ed rd + Ed SA blk) + Emux cc +

Et 1way rd + Ed dec + Ed rd + Ed SA blk + Eopd blk +

Et 1way wr + Ed dec + Ed wr + Ed SA blk (4.5)

where Et 1way rd and Et 1way wr are given by

Et 1way rd = Et dec + Et rd + Et SA

Et 1way wr = Et dec + Et wr + Et SA

EWIRMDV
= Et 4ways + Ed dec + Ed rd + Ed SA blk + Emux wi +

Et 1way rd + Ed dec + 4 ∗ Ed rd + Ed SA blk + Eopd blk +

Et 1way wr + Ed dec + 4 ∗ Ed wr + Ed SA blk (4.6)

• Read miss with clean victim line:

ECCRMCV
= Et 4ways + Ed dec + 4 ∗ (Ed rd + Ed SA blk) + Emux cc +

Et 1way wr + Ed dec + Ed wr + Ed SA blk (4.7)

EWIRMCV
= Et 4ways + Ed dec + Ed rd + Ed SA blk + Emux wi +

Et 1way wr + Ed dec + 4 ∗ Ed wr + Ed SA blk (4.8)

From Equations (4.5) and (4.6) (or (4.7) and (4.8)), it can be observed that the WI

cache consumes almost same energy as that of the conventional cache even though we

need to activate all the four ways to read or write a complete line data for replacement.

This is because of the fact that before we can ensure the access is a miss, we would

have already read four data ways in conventional cache and only one data way in WI

cache, making overall energy consumption almost equal.

• Write miss with dirty victim line:

ECCW MDV = Et 4ways + Ed dec + Ed rd + Ed SA blk + Eopd blk +

Et 1way rd + Ed dec + Ed wr + Ed SA blk +

Et 1way wr + Ed dec + Ed wr + Ed SA 4B (4.9)

Chapter 4: Word-Interleaved Cache Architecture 23

EWIW MDV = Et 4ways + Ed dec + 4 ∗ Ed rd + Ed SA blk + Eopd blk +

Et 1way rd + Ed dec + 4 ∗ Ed wr + Ed SA blk +

Et 1way wr + Ed dec + Ed wr + Ed SA 4B (4.10)

• Write miss with clean victim line:

ECCW MCV
= Et 4ways + Ed dec + Ed wr + Ed SA blk +

Et 1way wr + Ed dec + Ed wr + Ed SA 4B (4.11)

EWIW MCV
= Et 4ways + Ed dec + 4 ∗ Ed wr + Ed SA blk +

Et 1way wr + Ed dec + Ed wr + Ed SA 4B (4.12)

For Equations (4.9) to (4.12), we assume write allocate [19] option for all write misses.

On a cache miss, if the selected victim line is invalid, it is replaced by the desired

cache line (taken from the lower level cache). In this case, energy consumption is same as

that of valid and clean victim line case, so that energy consumption can be modeled by

Equations (4.7) and (4.8) or Equations (4.11) and (4.12) based on whether the access is for

a read or a write, respectively.

From Equations (4.9) and (4.10) (or (4.11) and (4.12)), we know that the WI cache

consumes more energy than the conventional cache as all the four ways have to be activated

to read or write a complete cache line for replacement.

It can be noted that Equations (4.3),(4.4),(4.5),(4.6),(4.9) to (4.12) do not hold

for instruction caches as processor does not write into a instruction cache.

4.5 Experimental Setup

In order to evaluate the WI cache, we consider 70nm technology node, modify

the CACTI 4.0 power model. We simulate L1 cache with different configurations (total

size, associativity and block size) to get the energy per access values of all the parameters

described in Section 4.4. The area overhead is calculated by modifying the area model. The

area overhead includes area for four small data mux, the area for replacing the first inverter

in the wordline driver with a NAND gate and the offset decoder. To get the statistics of the

L1 cache, we simulate 12 SPEC2000 CPU benchmarks (six integer and six floating point)

using the Simplescalar 3.0 considering the base processor configuration given in Table 3.1.

Chapter 4: Word-Interleaved Cache Architecture 24

Scenario ECC (in pJ) EWI (in pJ)
Read hit (RH) 89 29.9
Write hit (WH) 20.5 20.5

Read miss with dirty victim line (RMDV) 154 159
Read miss with clean victim line (RMCV) 107 84.6
Write miss with dirty victim line (WMDV) 89.7 154
Write miss with clean victim line (WMCV) 37.1 76.5

Table 4.2: Dynamic energy values per access in both the conventional and WI L1 cache
architectures.

4.6 Effectiveness of the WI Cache Architecture

We now study the effectiveness of the WI cache architecture in terms of dynamic

energy consumption and performance.

4.6.1 On dynamic energy consumption

Using CACTI 4.0, we calculate the energy consumption per access for both the

conventional and WI caches for all possible scenarios as discussed in Section 4.4 and the

corresponding energy values are shown in Table 4.2.

The overall dynamic energy consumption for both conventional and WI caches is

computed as follows:

Eoverall = no of rd hits ∗ Erd hit + no of wr hits ∗ Ewr hit

+no of rd misses ∗ Erd miss + no of wr misses ∗ Ewr miss (4.13)

where no of rd hits and no of rd misses are the total number of read hits and misses,

respectively, and no of wr hits and no of wr misses are the total number of write hits

and misses, respectively. Erd hit, Ewr hit, Erd miss, and Ewr miss are the energy consumption

values in the cache due to a read hit, a write hit, a read miss, and a write miss, respectively.

When the access energy for a read hit (refer to the first row in Table 4.2) is con-

sidered, the WI cache consumes about 33.6% of the total dynamic energy of a conventional

cache. From Table 4.2, we can also observe that both the WI and conventional caches

consume same energy for a write hit. For a read miss with dirty victim line, the WI cache

consumes almost same energy as that of the conventional cache, but when it comes to

write miss with dirty victim line, the WI cache consumes nearly twice the energy of the

Chapter 4: Word-Interleaved Cache Architecture 25

Figure 4.4: Percentage of reads and writes to the total number of accesses in the L1 in-
struction cache.

Figure 4.5: Percentage of reads and writes to the total number of accesses in the L1 data
cache.

conventional cache. Figures 4.4 and 4.5 show the percentage of reads and writes in the L1

instruction and data caches, respectively. Note that writes in the instruction cache are due

to replacements on a read miss only.

In the instruction caches, it is observed that reads contribute 99.7% of the total

accesses whereas writes contribute very small fraction (0.3%). On the other hand, in the

data caches, reads and writes contribute 88.8% and 11.2% of the total accesses, respectively,

on an average. When overall energy consumption is considered (Eq. (4.13)), as the number

of writes is very less compared to the number of reads, our technique can achieve significant

energy savings in both instruction and data caches.

Chapter 4: Word-Interleaved Cache Architecture 26

Figure 4.6: Dynamic energy savings of the WI L1 data cache over the conventional L1 data
cache.

Figure 4.6 shows benchmark wise dynamic energy savings for the WI architecture

over the conventional architecture for both instruction and data caches. When WI archi-

tecture is implemented in instruction caches, we obtain an average savings of 66.4% with

minimum of 65.9% for “gcc”. All the other benchmarks except “perlbmk” (66.1%) and

“applu” (66.3%) achieve savings of 66.4%. On the other hand, for data caches, we obtain

an average savings of 58.0% with a minimum of 46.4% for “art” and a maximum of 62.9%

for “perlbmk” benchmark.

When WI architecture was considered for instruction cache, we obtain more savings

than that of data cache because processor never writes into an instruction cache, eliminating

the energy consumption because of writebacks. Also since the number of hits (Figure 4.7)

in instruction caches are very much greater than the misses, the energy overhead incurred

due to block replacements is decreased significantly, achieving near optimal savings when

WI instruction cache is used.

From the Figure 4.6, we know that different benchmarks achieve different energy

savings, much predominant in the case of data caches. This is mainly because, as shown

in Figure 4.7, L1 data cache hit rates are different in all these benchmarks and the energy

savings of the WI cache mainly depend on the L1 cache hit rate.

Chapter 4: Word-Interleaved Cache Architecture 27

Figure 4.7: Benchmark-wise L1 cache hit rates for the WI cache. Note that the conventional
cache has also the same hit rate as that of the WI cache.

4.6.2 On cache performance and area

Considering the baseline configuration, in this section we provide analysis of the

WI cache architecture from performance point of view.

In order not to lengthen the critical path of the cache by adding an AND gate

after the wordline driver inverters, we achieve the same logic by replacing the first inverter

with a NAND gate. By carefully choosing the size of NAND gate, we can design it to be

as fast as the original inverter. An identical technique of replacing the first inverter by a

resized NAND gate is used in the way-halting cache [46] and way-concatenate cache [45]

designs. The area overhead of the WI cache with respect to the baseline configuration is

found to be very small (approximately 0.032%). The area overhead includes area for four

small data mux (replacing one bulk mux), the area for replacing the first inverter in the

wordline driver with a NAND gate and the offset decoder.

From the basic operation of the WI cache (and also from Figure 4.7), it can be

noted that the hit rate of the WI cache is same as that of the conventional cache as we

merely change the placement of the data in the data array. Thus, the WI cache does not

incur any performance penalty with respect to the conventional cache.

Chapter 4: Word-Interleaved Cache Architecture 28

Figure 4.8: Average dynamic energy savings of the WI cache over the conventional cache
for L1 instruction cache with different associativity and cache sizes, with 32B cache lines.

Figure 4.9: Average dynamic energy savings of the WI cache over the conventional cache
for L1 data cache with different associativity and cache sizes, with 32B cache lines.

4.7 Sensitivity analysis

In this section, we study the effectiveness of our technique in terms of dynamic

energy savings for L1 instruction and data caches by considering different associativity,

cache sizes, and cache line sizes.

Figures 4.8 and 4.9 show the average dynamic energy savings obtained across the

12 SPEC2000 CPU benchmarks for 2-, 4-, and 8-way set-associative caches of various sizes

with 32B cache lines, for instruction and data caches respectively. For a given cache size,

we can observe a similar pattern of significant increase in the energy savings with increase

in the associativity. This is because irrespective of the associativity, we always activate only

Chapter 4: Word-Interleaved Cache Architecture 29

Figure 4.10: Average dynamic energy savings of the WI cache over the conventional cache
for different associativity and blocksizes for a 32KB L1 instruction cache.

Figure 4.11: Average dynamic energy savings of the WI cache over the conventional cache
for different associativity and blocksizes for a 32KB L1 data cache.

one way per access, yielding higher savings at higher associativity. We also see from the

figure that the energy savings of the WI cache are not much dependent on the cache size

(and also on the number of sets), but for data caches, there is a small decrease in the energy

savings (about 3% to 4%) as size increases. For a given associativity and cache line size,

as cache size increases, the number of sets in the cache increase, which in turn increases

the bitline activation energy, thus the dynamic energy consumption increases, reducing the

overall dynamic energy savings.

Chapter 4: Word-Interleaved Cache Architecture 30

(a) Instruction cache (b) Data cache

Figure 4.12: L1 instruction and data cache miss rates for a 2-way 32KB cache with different
cache line sizes. Note that miss rate is same for both conventional and WI caches.

For instruction and data caches, Figures 4.10 and 4.11 show the variation in the

average dynamic energy savings of the WI caches as cache line size is varied from 8B to 64B,

respectively. We can observe that as line size increases, the overall energy savings increase.

When a program exhibits higher spatial locality, a larger cache line size can reduce cache

misses. For example, Figure 4.12 shows average miss rates in L1 instruction and data caches

for a 2-way 32KB cache with cache line sizes varied from 8B to 32B. So, as the cache line

size increases, miss rate decreases, which in turn increases the energy savings (since this

reduces the need to activate all the ways for writing back the data block and writing the

new/requested cache line).

It can be observed that in Figures 4.10 and 4.11, we omit few cache line sizes

for different associativity because to implement the WI architecture, a minimum block size

is needed, which is calculated from the product of minimum possible word size (4B) and

associativity. For example, for an 8-way set associative cache, minimum block size needed

to implement the WI cache architecture is 32B.

Chapter 4: Word-Interleaved Cache Architecture 31

4.8 Comparison of the WI cache architecture with other

cache techniques

In this section we study WI architecture in comparison with other cache techniques

like cache exploiting fast hits, subbanking, phased-access cache and drowsy cache. For

comparison/study with phased-access cache and drowsy cache we consider only data caches.

4.8.1 Exploiting fast hits

Due to memory locality property, there is a high probability that the same cache

line can be requested in the subsequent cache accesses. By exploiting this property, a cache

design technique is proposed in [39], which stores the last accessed cache line in a buffer.

So, whenever there is a request to the cache, the buffer is checked first and if there is a

match, we avoid accessing the cache, thus save the dynamic energy required to access the

cache. We call such hits in the buffer as fast hits. Exploiting fast hits phenomenon not

only reduces the overall system power but also improves IPC as access to the buffer is much

faster than access to cache. Note that, the cache is accessed as and when the request misses

in the buffer, so that in such cases, we incur one extra cycle penalty for cache access.

When we combine the fast hit mechanism (by considering a buffer to store the

most recently accessed word) along with our WI cache architecture, the WI cache achieves

more dynamic energy savings over the conventional cache with fast hit mechanism. The

reasons are several-fold: the WI cache with fast hit mechanism accesses only one way

as compared to accessing all 4-ways in the conventional cache with fast hit mechanism;

multiplexer consumes less energy in the WI cache; output drivers of only a wordsize are

active in the WI cache with fast hit mechanism as opposed to output drivers of a complete

cache line size are active in the conventional cache with fast hit mechanism; buffer consumes

more energy in the conventional cache with fast hit mechanism as it is required to store

index and tag along with the whole cache line data, whereas in the case of WI cache with

fast hit mechanism, the buffer stores index, tag, and offset bits with only one word of data.

From our simulations, we observe that an access to the buffer consumes 9.45pJ and 4.93pJ

in the conventional and WI caches with fast hit mechanisms, respectively.

Chapter 4: Word-Interleaved Cache Architecture 32

Figure 4.13: Benchmark-wise fast hits percentage for both instruction and data caches,
considering both conventional and WI architectures.

From the above description, when fast hits are considered, the energy consumption

for a read hit can be modeled as

ECCRH
= Et 4ways + Ed dec + 4 ∗ (Ed rd + Ed SA blk) + Emux cc + Eopd blk (4.14)

EWIRH
= Et 4ways + Ed dec + Ed rd + Ed SA blk + Emux wi + Eopd word (4.15)

From equations 4.14 and 4.15 it was found that, WI cache consumes only 23.0% of total

read access energy of conventional cache. For all the other scenarios, Eq. (4.3) to (4.12)

are valid for the fast hits case also.

Figure 4.13 shows the percentage of fast hits in the case of instruction and data

caches when the conventional and WI cache architectures are considered. Due to low tem-

poral and spatial locality in data belongs to the data cache, the number of fast hits is very

less. It can be seen from Figure 4.13 that in the case of data cache the fast hits constitute

only 17.5% and 8.8% of the total hits for the conventional and WI cache architectures,

respectively. Hence the impact of fast hits on the WI cache architecture is not so significant

in terms of performance and energy consumption as compared to the conventional archi-

tecture. But in the case of instruction caches, due to high temporal and spatial locality,

the number of fast hits is very high for the conventional cache (83.8%) as compared to

the WI cache (48.1%). Because of less number of fast hits in WI instruction cache, the

performance loss when compared to conventional instruction cache is very much high. This

makes the WI cache architecture less preferable for the instruction caches, when considered

in combination with fast hits.

Chapter 4: Word-Interleaved Cache Architecture 33

Figure 4.14: Energy savings of the WI L1 data cache over the conventional L1 data cache
considering fast hits.

Figure 4.15: Benchmark-wise performance degradation for the WI L1 data cache with fast
hit mechanism over the conventional L1 data cache with fast hit mechanism.

Figure 4.14 shows benchmark wise energy savings for the WI L1 data cache with

fast hit mechanism over the conventional L1 data cache with the fast hit mechanism. We

obtain total energy savings in the range of nearly 53.6% (“art”) to 64.9% (“mgrid”) with

an average of 61.0%. When overall energy savings are observed, the savings of the WI

data cache with fast hit mechanism are more than that of the WI cache without fast hit

mechanism. Note that even though reduction in the number of fast hits increases the

number of accesses to the L1 data cache, we obtain higher overall energy savings because

of two reasons: in each access, significant energy is saved in the output drivers; buffers in

the WI cache consumes less energy than that of the conventional cache.

Chapter 4: Word-Interleaved Cache Architecture 34

Figure 4.15 shows benchmark-wise performance degradation for the WI L1 data

cache with fast hit mechanism over the conventional L1 data cache with fast hit mecha-

nism. From the figure, it is clear that most of the benchmarks incur small performance

degradation. On the other hand, benchmarks “parser”, “equake”, and “mesa” incur 2.4%,

3.6%, and 6.0% IPC degradation, respectively. This is because for these benchmarks, the

number of fast hits in the WI cache is very small as compared to that of the conventional

cache. Overall, the WI data cache with fast hit mechanism incurs a performance penalty

of 1.9% with respect to the conventional L1 data cache with fast hit mechanism.

4.8.2 Considering subbanking

Typical organization of a SRAM cache was shown in Figure 4.1. Such an organiza-

tion could result in an (data/tag) array that is larger in one direction or the other, creating

slower bitlines or wordlines and resulting in a longer than necessary access time. To avoid

this, a large array is partitioned into a number of identically sized subarrays (or subbanks)

[42, 16, 6]. In order to achieve this, CACTI tool uses six organizational parameters, three

for each of data and tag arrays. For a given cache configuration (total size, associativity

and block size), Ndwl and Ndbl indicate the extent to which data array can be divided. The

parameters Ndwl and Ndbl specify the number of times the array has been spilt with vertical

cut lines (creating shorter wordlines) and horizontal cut lines (creating shorter bitlines),

respectively. The total number of subarrays is thus given by Ndwl ∗Ndbl. The third param-

eter which mainly depends on block size and output bit width is Nspd, which indicates the

number of sets that are mapped on to a single wordline. This parameter is very important

as it allows the overall access time of the array to be changed without breaking it into even

smaller subarrays. Nspd can even take fractional values, implying that few words of a block

of each way can be mapped to a single wordline. Similar to the data array, for tag array

we have three parameters Ntwl, Ntbl and Ntspd.

For each cache configuration, CACTI calculates optimal values of these six or-

ganizational parameters via exhaustive search to achieve the best trade off of cache size,

performance and energy consumption. As it can be seen, these organizational parameters

effect the overall energy consumption in a cache by reducing the energy dissipation in word-

lines, bitlines, sense amplifiers and data multiplexor of the data array. Here we point out

that in order to implement the WI cache we have not changed the subarray organization.

Chapter 4: Word-Interleaved Cache Architecture 35

(a) Original data array (b) Data array after subbanking

(c) Subarrays 1, 2, 3 and 4 - Conventional cache

(d) Subarrays 1, 2, 3 and 4 - WI cache

Figure 4.16: Subbank division and arrangement in the data array, considering conventional
and WI cache architectures.

Chapter 4: Word-Interleaved Cache Architecture 36

For the baseline configuration considered, the cache outputs only 4B of data. The

optimal organizational parameters for the data array, for such a configuration are found

to be Ndwl = 2, Ndbl = 8 and Nspd = 0.5. So, the complete data array is spilt into 16

small subarrays. Figures 4.16(a) and 4.16(b) show the original data array and arrangement

of subbanks, respectively. Each subbank consists of 32 rows and 256 columns. In the

Figure 4.16(b) only the first level of address decoding H-tree is presented. Figures 4.16(c)

and 4.16(d) present the details of subbanks 1, 2, 3 and 4 for conventional and WI cache

architectures, respectively. Each row of these four subarrays forms a set. Since Nspd is 0.5,

subarrays 1 and 2 (similarly, 3 and 4) contribute half of each of the lines, hence share a

single wordline. As assumed previously cache lines B1, B2, B3 and B4 form a set, each with

four words (w1, w2, w3 and w4) of size 8byte each.

From Figure 4.16(c), the arrangement of words (and also four small data mux

instead of one bulk mux) in the conventional cache after the subbanking looks much similar

to that of WI cache (without subbanking, Figure 4.2), but in subbanking, the arrangement

is based only on the organizational parameters. During a read access, the conventional

cache with such an arrangement of words among subarrays activates all the wordlines and

bitlines in all the four subarrays (1, 2, 3 and 4). But in CACTI, in order to reduce energy

consumption in sense amplifiers and data mux for output widths less than a block size,

sense amplifiers and data mux of only one subarray are activated, signifying that inherently

there is offset decoding done at this stage. For a write access, when writing a complete line

of data, due to distribution of the words among subarrays, wordlines and bitlines of all four

subarrays are activated along with activation of sense amplifiers of word size in each of the

subarray.

In case of WI cache architecture, as seen from Figure 4.16(d), the arrangement

of words after the subbanking is much similar to that of conventional cache (without sub-

banking, Figure 4.1). With this arrangment, when there is a read access, since we consider

access to a subbank (or subarray) only at line size granularity, we need to activate all the

wordlines and bitlines in the four subarrays (1, 2, 3 and 4). But, when it comes to sense

amplifiers, since we know the word needed (from offset decoding) we can activate sense

amplifiers of only a word size from these subarrays. The four words obtained from the four

subarrays are driven to the data mux, wherein using the result of tag comparision, only the

required word is sent out. On the other hand, for writing a complete block of data, with

such arrangement of words, we need to activate wordlines and bitlines of only one subarray.

Chapter 4: Word-Interleaved Cache Architecture 37

(a) Subbanked conventional cache

(b) Subbanked WI cache

Figure 4.17: Subbanks 1, 2, 3 and 4 and arrangement of words in them when the baseline
cache outputs 32B of data.

From the above details of working of a subbanked conventional cache and a sub-

banked WI cache, we can observe that both the caches consume same amount of energy for

a read operation. For a write operation though, subbanked WI cache saves some energy

because it activates wordlines and bitlines of only one subarray. When the overall energy

savings are considered, it was found that in case of instruction cache both conventional

and WI caches with subbanking consume almost same amount of energy. For data caches

though, we obtain around 4% of savings in subbanked WI cache over subbanked conventional

cache. This should not discourage one from implementing the WI cache architecture along

with subbanking because the arrangement of words after subbanking completely depends

on the cache configuration alone.

In order to prove this, we consider another cache configuration and study the

combined affect of subbanking and word interleaving. Consider the baseline configuration,

16KB, 4-way, 32B cache now with output bitwidth of 32B. This is the case when the L1

cache exploits the fast hits phenomenon. The organizational parameters for this configura-

tion are found to be Ndwl = 4, Ndbl = 4 and Nspd = 1. In this case also we have 16 subarrays

and subarray arrangement shown in Figure 4.16(b) still holds here. But major difference

comes in the arrangement of words in the subbanks. Figure 4.17 shows the subarrays 1, 2, 3

and 4 of the data array and arrangement of words in these subarrays for both conventional

and WI cache architectures. Here the four subarrays share a common wordline (since Nspd

Chapter 4: Word-Interleaved Cache Architecture 38

Figure 4.18: Benchmark-wise energy savings of the WI cache and phased-access cache over
the conventional L1 data cache.

is 1). From Figures 4.17(a) and 4.17(b), we can observe that arrangement of words is similar

to that of conventional and WI caches in Figures 4.1 and 4.2, respectively. So, the equations

of energy consumption in conventional cache and WI cache (given in Section 4.4) are valid

here. The average energy savings obtained considering fast hits and subbanking in WI data

cache is 58.7%, much close to average savings obtained when subbanking is not considered

(61%).

From the above examples, we can observe that when WI architecture is considered

along with subbanking technique, the effectiveness of WI cache architecture in terms of

dynamic energy savings is completely dependent on the cache configuration.

4.8.3 Phased-access cache

In this subsection we compare the WI cache with phased-access cache [18], con-

sidering only data caches because phased cache is generally preferred only for data caches.

When we consider dynamic energy consumption, phased-access cache provides the best

possible energy-efficient cache design, accessing one and only one way per access. But the

downside of it, due to sequential access of tag and data arrays, the phased-access cache

incurs significant performance penalty.

Figure 4.18 shows the dynamic energy savings obtained by the WI and phased-

access caches over the conventional data cache. For all the benchmarks, phased-access

cache achieves significantly more savings than WI cache (in case of “art” savings are 25.5%

Chapter 4: Word-Interleaved Cache Architecture 39

Figure 4.19: Benchmark-wise performance degradation of the WI cache and phased-access
cache over the conventional L1 data cache.

more). On an average, phased-cache achieves 11.5% more savings than the WI cache. This

is mainly because of two reasons: in phased-access cache, data select multiplexer is not

present as only one data way is accessed; unlike the conventional and phased-access caches,

the WI cache incurs more energy consumption when writing a complete line of data.

Figure 4.19 shows benchmark-wise performance loss incurred by the WI and phased-

access caches over the conventional data cache. As discussed earlier in Section 4.6.2, the

WI cache does not incur any performance penalty with respect to the conventional cache.

The phased-access cache incurs an average performance loss of 9.1% with a maximum per-

formance degradation 15.9% (in the case of “gcc” benchmark).

4.8.4 Exploiting drowsy mechanism

In order to minimize the leakage energy consumption, we implement the drowsy

cache mechanism in our WI L1 data cache. Drowsy cache technique [15] is a well known

leakage minimization technique for L1 data caches as it retains the data in the SRAM cell

and has a short wake-up latency. In drowsy mechanism, data is put into a low-leakage or

drowsy mode whenever it is not likely to be reused. In drowsy mode, the supply voltage of

the cell is very less, near to the threshold voltage, thus the leakage is reduced significantly.

Data is accessible only when the block is in the normal or active mode. On the other hand,

in drowsy mode, accessing the data will destroy the cell contents. So, whenever data in

drowsy mode needs to be accessed, it must first be brought back to normal mode. Drowsy

Chapter 4: Word-Interleaved Cache Architecture 40

Figure 4.20: Impact of update window size on performance and the percentage of cache
lines in drowsy mode for both the conventional and WI drowsy L1 data caches.

to normal mode transition incurs some performance loss.

We now compare the WI drowsy L1 data cache with conventional drowsy L1 data

cache. In the conventional drowsy cache, whenever there is an access, cache lines in all the

ways of the target set are woken up from drowsy to the active mode even though required

data is present only in one way. When the WI drowsy cache is considered, with the help of

offset decoding, we can activate only one cache line per access. Thus the time for which a

block remains in drowsy mode is relatively more in the WI drowsy cache as compared to

the conventional drowsy cache.

In order to verify the above observation, we consider a simple policy wherein all

the cache lines are put into drowsy mode periodically. This simple policy is found to be

efficient in reducing leakage [15]. In [26], the authors proposed a circuit refinement of

drowsy technique called super-drowsy technique. In this technique, in order to alleviate

the interconnect routing space, multiple supply voltage sources are replaced by a single-Vdd

cache line voltage controller with a Schmitt trigger inverter. Also, using this technique,

we can lower the supply voltage much more than that of normal drowsy technique [15] to

reduce cell leakage power. This circuit technique, though proposed for instruction caches,

Chapter 4: Word-Interleaved Cache Architecture 41

can also be used for data caches. In our experiments, we consider the circuit technique of

super-drowsy mechanism with the simple policy of periodically placing all the cache lines

in drowsy mode. It can be noted that, in this study, we do not concentrate on reducing the

bitline leakage power.

Figure 4.20 shows the impact of update window size on both performance and the

percentage of drowsy lines of both conventional and WI drowsy cache architectures for a

16KB 4-way set associative data cache with 32B cache lines. The figure shows the average

IPC degradation and the average percentage of drowsy lines across the 12 SPEC2000 CPU

benchmarks. We consider one cycle wake-up penalty. It can be clearly seen that the

percentage of drowsy lines is more in the WI drowsy caches as we bring only one cache line

to active mode per access.

On the other hand, there is a negative effect of word-interleaving on the perfor-

mance of drowsy cache. Performance loss is more in the WI drowsy cache as compared to

the conventional drowsy cache because there is a high probability that between two update

periods different words of a same cache line can be requested. In such a case, the cache line

is already in the active mode in the conventional cache, but in the WI drowsy cache, since

only one word is active, when there is request for another word of the same cache line, an

additional cycle penalty is incurred to activate the block containing the newly requested

word. For example, consider a cache line B1 which contains four 8B words w1, w2, w3, and

w4. In the conventional drowsy cache, all the words are brought into active mode when

accessed for the first time, even though only one word is required. This has an advantage

that if another word of the same cache line is requested during the same interval, the word

can be accessed immediately, without any wake-up penalty. When we consider WI cache,

during an interval, if w1 of B1 is requested, only that word is turned active (along with

w1’s of other blocks of the set). Now during the same interval, if any other word of B1

is requested, we have to wake-up the corresponding word. We consider different update

window sizes such as 500, 2000, 4000, 8000 and 32000 cycles. As the window size increases,

performance penalty is decreased along with the reduction in the percentage of cache lines

in drowsy mode.

For the remaining part of the work, we consider an update window size of 2000

cycles as it provides good compromise between percentage of drowsy lines and performance.

With update window size of 2000 cycles, on an average, we incur 0.3% and 0.7% of per-

formance degradation with 61.6% and 66.7% of drowsy lines for the conventional drowsy

Chapter 4: Word-Interleaved Cache Architecture 42

Figure 4.21: Benchmark-wise IPC degradation for both the conventional and WI drowsy
caches with respect to the base case with an update window size of 2000 cycles.

Figure 4.22: Benchmark-wise leakage energy savings for both the conventional and WI
drowsy caches with respect to the base case with an update window size of 2000 cycles.

cache and WI drowsy cache, respectively.

Detailed power values for drowsy and normal modes are obtained from HSPICE

studies on a 6 transistor SRAM memory cell in 70nm technology using Predictive Technol-

ogy Model [1] circuit simulation parameters. We consider supply voltage (Vdd) and threshold

voltage (Vt) as 1V and 0.2V , respectively. Our simulations show that a memory cell con-

sumes leakage power of 58.3nW per active bit at Vdd = 1V and 6.6nW per drowsy bit at

Vdd = 0.25V with 2.64fJ and 6.37fJ transition energy penalties for drowsy-to-active and

active-to-drowsy transitions, respectively. Figure 4.21 gives benchmark wise performance

degradation incurred by the conventional drowsy and WI drowsy data caches as compared

to the baseline data cache.

Chapter 4: Word-Interleaved Cache Architecture 43

Figure 4.22 shows the leakage energy savings for the conventional and WI drowsy

caches with respect to the baseline data cache by considering an update window size of

2000 cycles. We can observe that in almost all the benchmarks we obtain more savings in

the WI drowsy cache than the conventional drowsy cache. On an average, the WI drowsy

cache achieves nearly 9% more savings than that of the conventional drowsy cache. Due to

transitions between active-to-drowsy and drowsy-to-active modes, we incur some dynamic

energy consumption. On an average, for the conventional drowsy cache, overhead due to

these transitions is 4.4% of the dynamic energy consumption of the base case and for the

WI drowsy cache the overhead is found to be 4%.

Chapter 5

Conclusions and Future Work

This chapter summarizes the contributions of the thesis and then throws light on

possible directions for future work.

As technology is scaling, both for portable and non-portable applications, en-

ergy/power consumption minimization has become the most important parameter in de-

signs. This is because of the fact that for portable applications battery performance is

not improving as demanded by the applications and when non-portable applications are

considered we have drastic increase in power density values, which arise many realiability

and cooling issues. On-chip cache is an important component in modern processors for

achieving high performance. Because of its large area and high access frequency, it also

becomes a major energy consumer in processors. Consequently, in this thesis we proposed

an energy-efficient cache architecture for high performance microprocessor systems.

Ideally, one would desire performance of a set-associative cache with energy con-

sumption of that of a direct-mapped cache. We proposed an energy-efficient cache architec-

ture, namely, the word-interleaved (WI) cache which nearly achieves this ideal scenario. In

the WI cache, a cache line is uniformly distributed among the different cache ways in such

a way that each cache way holds some words of the cache line. By experimental validation,

we showed that the WI cache architecture, without incurring any performance loss, saves

66.4% and 58% dynamic energy over a 16KB 4-way set-associative conventional cache with

32B cache lines in instruction and data caches, respectively.

Sensitivity analysis was done considering different cache sizes, associativity and

cache line sizes. It was noticed that for a given cache line size, as associativity increases,

there is a significant increase in energy savings because irrespective of the associativity, we

44

Chapter 5: Conclusions and Future Work 45

always activate only one way per access. But the savings were not much dependent on the

cache size (also number of sets). When various cache line sizes were considered for a given

cache size and associativity, we found that savings increase with increment in line size. The

reason behind this being decrease in the number of misses with increase in line size, which

in-turn reduces the miss penalty incurred.

Realizing the importance of fast hits phenomenon, when a cache which exploits

fast hits is considered, it was found that the WI cache architecture is not suitable for

instruction caches and achieves average dynamic energy savings of 61.0% for data caches.

But due to less number of fast hits in the WI data cache, these energy savings are obtained

with a performance penalty of 1.9%. We also studied the combined effect of WI cache with

subbanking and found that the effectiveness of WI cache is highly dependent on the cache

configuration.

In order to study the effectiveness of WI cache architecture on leakage energy

consumption, we implemented drowsy mechanism in our WI cache architecture. It was

found that the WI drowsy cache achieves higher minimization in leakage than that of

conventional drowsy cache. This is because whenever there is an access, in WI drowsy

cache, only one cache line is activated (woken-up from drowsy to active mode) per access,

whereas in the conventional drowsy cache, all the lines of a set are activated in every access.

But this increased savings are obtained at an increased performance degradation over the

conventional drowsy cache. For the baseline configuration, on an average, the conventional

drowsy and WI drowsy data caches incur 0.3% and 0.7% of performance penalty with 54.5%

and 58.6% of leakage energy savings, respectively.

Advantages of our architecture lie in its simple control logic, no modification to

SRAM array in cache and no increase in non-determinism in hit latency of L1 caches. It

can be implemented in caches with associativity larger than one, and is worthy of being

implemented in high-associativity caches, usually employed in some high-performance com-

mercial processors.

Process variation is a serious problem in nanoscale technologies. The special fea-

ture of WI cache is that one can have access at block level granularity. This feature might

be helpful in reducing the impact of process variations on performance of caches. As a part

of future work one can investigate variation tolerant techniques for caches which can exploit

access to block level granularity.

Bibliography

[1] Predictive technology model. http://www.eas.asu.edu/˜ptm/

[2] CACTI Tool. http://www.hpl.hp.com/personal/Norman Jouppi/cacti4.html

[3] SimpleScalar toolset. http://www.simplescalar.com

[4] SPEC 2000 Benchmark. http://www.spec.org

[5] A. Agarwal, et al. “DRG-cache: A Data Retention Gated-ground cache for low power”.
Proceedings of the conference on Design automation, 2002, pp. 473-478.

[6] B. Amrutur and M. Horowitz,“Speed and power scaling of sram’s”. IEEE Journal of
Solid-State Circuits (JSSC), 2000, pp. 175-185.

[7] D. Albonesi, “Selective cache ways: on-demand cache resource allocation”. Proceedings
of the International Symposium on Microarchitecture (MICRO), 1999, pp. 248-259.

[8] B. Batson and T.N. Vijaykumar. “Reactive-associative caches”. Proceedings of the In-
ternational Conference on Parallel Architectures and Compilation Techniques (PACT).
2001, pp. 49-60.

[9] D. Brooks, et al., “Wattch: a framework for architectural-level power analysis and
optimizations”. Proceedings of the International Symposium on Computer Architecture
(ISCA), 2000, pp. 83-94.

[10] B. Cadler, et al., “Predictive sequential associative cache”. Proceedings of the Inter-
national Symposium on High Performance Computer Architecture (HPCA), 1996, pp.
244-253.

[11] A. Chandrakasan, S. Sheng, and R. Brodersen. “Low-power CMOS digital design”.
IEEE Journal of Solid-State Circuits (JSSC), 27(4), 1992, pp. 473-484.

[12] Y. Chang and F. Lai, “Dynamic zero-sensitivity scheme for low-power cache memories”.
Proceedings of the International Symposium on Microarchitecture (MICRO), 25(4),
2005, pp. 20-32.

[13] Y. Chang, et al., “Design and analysis of low-power cache using two-level filter scheme”.
IEEE Transactions on Very Large Scale Integration Systems, 11(4), 2003, pp. 568-580.

46

Bibliography 47

[14] Dropsho, et al., “Integrating adaptive on-chip storage structures for reduced dynamic
power”. Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2002, pp. 141-152.

[15] K. Flautner, et al., “Drowsy caches: simple techniques for reducing leakage power”.
Proceedings of the International Symposium on Computer Architecture (ISCA), 2002,
pp. 148-157.

[16] K. Ghose and M.B. Kamble, “Reducing power in superscalar processor caches using
subbanking, multiple line buffers and bit-line segmentation”. Proceedings of the In-
ternational Symposium on Low Power Electronics and Design (ISLPED), 1999, pp.
306-315.

[17] E. Gibert, J. Snchez, A. Gonzlez. “Effective Instruction Scheduling Techniques for
an Interleaved Cache Clustered VLIW Processor”. Proceedings of the International
Symposium on Microarchitecture (MICRO), 2002, pp. 123-133.

[18] A. Hasegawa, et al., “SH3: high code density, low power”. Proceedings of the Interna-
tional Symposium on Microarchitecture (MICRO), 15(6), 1995, pp. 11-19.

[19] L. Hennessey and D.A. Patterson, Computer Architecture: A Quantitative Approach.
4th Edition, Elsevier Science & Technology Books, 2006.

[20] M. Huang, et al., “L1 data cache decomposition for energy efficiency”. Proceedings of
the International Symposium on Low Power Electronics and Design (ISLPED), 2001,
pp. 10-15.

[21] K. Inoue, et al., “Way-predicting set-associative cache for high performance and low
energy consumption”. Proceedings of the International Symposium on Low Power Elec-
tronics and Design (ISLPED), 1999, pp. 273-275.

[22] “Power-Efficient System-on-Chip power Trends, System Drivers”, International Tech-
nology Roadmap for Semiconductors (ITRS), 2005.

[23] P. Jung-Wook, et al., “Power-aware deterministic block allocation for low-power way-
selective cache structure”. Proceedings of the International Conference on Computer
Design (ICCD), 2004, pp. 42-47.

[24] S. Kaxiras, et al., “Cache decay: exploiting generational behavior to reduce cache
leakage power”. ACM SIGARCH Computer Architecture News, 29(2), 2001, pp. 240-
251.

[25] C. Kim, D. Burger and S. W. Keckler, “An Adaptive, NonUniform Cache Structure
for WireDelay Dominated OnChip Caches”. Proceedings of the Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2002, pp. 211-222.

[26] N. S. Kim, et al. “Single-vdd and single-vt super-drowsy techniques for low-leakage
high-performance instruction caches”. Proceedings of the International Symposium on
Low Power Electronics and Design (ISLPED), 2004, pp. 54-57.

Bibliography 48

[27] J. Kin, et al., “The filter cache: an energy efficient memory structure”. Proceedings of
the International Symposium on Microarchitecture (MICRO), 1999, pp. 184-193.

[28] D. Liu et al. “Power consumption estimation in CMOS VLSI chips”. IEEE Journal of
Solid-State Circuits (JSSC), 1994, 26, pp. 663-670.

[29] M. Meijer, J. Pinede de Gyvez, and R. Otten. “On-Chip Digital Power Supply Control
for System-on-Chip Applications”. Proceedings of the International Symposium on Low
Power Electronics and Design (ISLPED), 2005, pp. 311-314.

[30] G. Memik, et al., “Reducing energy and delay using efficient victim caches”. Proceed-
ings of the International Symposium on Low Power Electronics and Design (ISLPED),
2003, pp. 262-265.

[31] J. Montanaro, et al., “A 160 MHz, 32b 0.5W CMOS RISC microprocessor”. Proceed-
ings of the International Solid-State Circuits Conference (ISSCC), 1996, pp. 214-215.

[32] D. Nicolaescu, et al., “Reducing data cache energy consumption via cached load/store
queue”. Proceedings of the International Symposium on Low Power Electronics and
Design (ISLPED), 2003, pp. 252-257.

[33] M. Pedram, “Power minimization in IC design: principles and applications”. ACM
Transactions on Design Automation of Electronic Systems, 1996, pp. 3-56.

[34] P. Petrov and A. Orailoglu, “Tag compression for low power in dynamically customiz-
able embedded processors”. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 23(7), 2004, pp. 1031-1047.

[35] M. Powell, et al, “Reducing set-associative cache energy via way-prediction and selec-
tive direct-mapping”. Proceedings of the International Symposium on Microarchitecture
(MICRO), 2001, pp. 54-65.

[36] J. M. Rabaey, “System-level power estimation and optimization challenges and per-
spectives. Proceedings of the International Symposium on Low Power Electronics and
Design (ISLPED), 1997, pp. 158-160.

[37] J. M. Rabaey, Digital Integrated Circuits: A Design Perspective, Prentice-Hall, Inc.,
1996.

[38] K. Roy and Sharat Prasad, Low-Power CMOS VLSI Circuit Design, John Wiley &
Sons, Inc., 2000.

[39] C. Su and A. Despain, “Cache design tradeoffs for power and performance optimiza-
tions: a case study”. Proceedings of the International Symposium on Low Power Elec-
tronics and Design (ISLPED), 1995, pp. 63-68.

[40] D. Tarjan, S. Thoziyoor and N. Jouppi, “CACTI 4.0: An Integrated Cache Timing,
Power and Area Model”, Technical report, HP Laboratories, Palo Alto, June 2006.

Bibliography 49

[41] T. Venkata Kalyan, Madhu Mutyam, “Word-Interleaved Cache: An Energy Efficient
Data Cache Architecture”. Proceedings of the International Symposium on Low Power
Electronics and Design (ISLPED), 2008, pp. 265-270.

[42] T. Wada, S. Rajan and S. Przybylski, “An analytical access time model for on-chip
cache memories”. IEEE Journal of Solid-State Circuits (JSSC), 1992, pp. 1147-1156.

[43] C. L. Yang and C. H. Lee, “Hotspot cache: joint temporal and spatial locality ex-
ploitation for i-cache energy reduction”. Proceedings of the International Symposium
on Low Power Electronics and Design (ISLPED), 2004, pp. 114-119.

[44] C. Zhang, et al., “A self-tuning cache architecture for embedded systems”. ACM Trans-
actions on Embedded Computing Systems, 2004, pp. 407-425.

[45] C. Zhang, et al., “A highly configurable cache for low energy embedded systems”. ACM
Transactions on Embedded Computing Systems, 2005, pp. 363-387.

[46] C. Zhang, et al., “A way-halting cache for low-energy high-performance systems”. ACM
Transactions on Architecture and Code Optimization, 2005, pp. 34-54.

[47] M. Zhang, et al., “Reducing cache energy consumption by tag encoding in embedded
processors”. Proceedings of the International Symposium on Low Power Electronics
and Design (ISLPED), 2007, pp. 367-370.

[48] Z. Zhu and X. Zhang, “Access-mode predictions for low-power cache design”. Proceed-
ings of the International Symposium on Microarchitecture (MICRO), 22(2), 2002, pp.
58-71.

