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Casebase Maintenance

Goal : Maintain a compressed casebase that can solve new problems
effectively
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Competence Guided Casebase Maintenance

Competence of a CBR system is the range of target problems that
the given system can solve

Competence guided casebase maintenance system retains a case in
the casebase if it is useful to solve many problems

Thus it ensures that the casebase is highly competent in the global
sense

Footprint-based approach∗ estimates a competent subset of the
casebase

However, Footprint based approach covers only the situation where a
single case is adapted to solve a problem

∗Smyth et al. Footprint-based Retrieval. In Case Based Reasoning Research and
Development 1999
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Motivation
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Footprint-based Approach

Uses Case Competence Model

Solves(c, t)⇔ c can be retrieved and adapted for t

Coverage(c) = {c′ ∈ C : Solves(c, c′)}
Reachability(c) = {c′ ∈ C : Solves(c′, c)}

Coverage(c3) = {c2,c4}
Reachability(c2) = {c1,c3}
Reachability(c4) = {c3,c5,c6}

Ditty Mathew, Sutanu Chakraborti ICCBR 2016 5 / 30



Footprint-based Approach

Uses Case Competence Model

Solves(c, t)⇔ c can be retrieved and adapted for t

Coverage(c) = {c′ ∈ C : Solves(c, c′)}
Reachability(c) = {c′ ∈ C : Solves(c′, c)}

Coverage(c3) = {c2,c4}
Reachability(c2) = {c1,c3}
Reachability(c4) = {c3,c5,c6}

Ditty Mathew, Sutanu Chakraborti ICCBR 2016 5 / 30



Footprint-based Approach

Uses Case Competence Model

Solves(c, t)⇔ c can be retrieved and adapted for t

Coverage(c) = {c′ ∈ C : Solves(c, c′)}
Reachability(c) = {c′ ∈ C : Solves(c′, c)}

Coverage(c3) = {c2,c4}
Reachability(c2) = {c1,c3}
Reachability(c4) = {c3,c5,c6}

Ditty Mathew, Sutanu Chakraborti ICCBR 2016 5 / 30



Footprint-based Approach

Uses Case Competence Model

Solves(c, t)⇔ c can be retrieved and adapted for t

Coverage(c) = {c′ ∈ C : Solves(c, c′)}
Reachability(c) = {c′ ∈ C : Solves(c′, c)}

Coverage(c3) = {c2,c4}
Reachability(c2) = {c1,c3}
Reachability(c4) = {c3,c5,c6}

Ditty Mathew, Sutanu Chakraborti ICCBR 2016 5 / 30



Footprint-based Approach

Uses Case Competence Model

Solves(c, t)⇔ c can be retrieved and adapted for t

Coverage(c) = {c′ ∈ C : Solves(c, c′)}
Reachability(c) = {c′ ∈ C : Solves(c′, c)}

Coverage(c3) = {c2,c4}
Reachability(c2) = {c1,c3}
Reachability(c4) = {c3,c5,c6}

Ditty Mathew, Sutanu Chakraborti ICCBR 2016 5 / 30



Footprint-based Approach

Uses Case Competence Model

RelativeCoverage(a) =
∑

b∈Coverage(a)

1

|Reachability(b)|

Coverage(c3) = {c2,c4}
Reachability(c2) = {c1,c3}
Reachability(c4) = {c3,c5,c6}
RelativeCoverage(c3) = 1

2 + 1
3
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Footprint-based Approach

Estimation of compact competent subset called footprint set

Cases Relative Coverage

c1 2.25

c2 1.75

c4 0.5

c3 0.25

c5 0.25

Footprint set = ∅
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Footprint-based Approach

In Compositional Adaptation applications

Footprint set = {c1}
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Footprint-based Approach - Limitations

Covers only single case adaptation

Transitive coverage is not considered
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Proposed Case Competence Model

Proposed a case competence model which covers compositional
adaptation process (of which the single case adaptation is a special
case)
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Proposed Case Competence Model

We proposed a measure called retention score which quantifies the
retention quality of a case in the casebase

CoveredCases(c) include all cases that c
solves either on its on, or in conjuction with
other cases

Eg: CoveredCases(c1) = {c3, c4}

SupportCases(ci, cj) is the set of cases that

are required to solve cj using ci

Eg: SupportCases(c1,c3) = {c2}
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Proposed Case Competence Model

RetentionScore Intuition

A case has high retention score if it has

many covered cases
less number of support cases
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Proposed Case Competence Model

RetentionScore Intuition (recursive formulation)

A case has high retention score if it has

many covered cases with high retention score
less number of support cases with low retention score
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Proposed Case Competence Model

For first iteration

RetentionScore0(c) =
∑

ci∈CoveredCases(c)

1/(1 + No of alternate solutions that do not contain c)

1+|SupportCases(c,ci)|
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Proposed Case Competence Model

RetentionScore0(c) =
∑

ci∈CoveredCases(c)

1/(1 + No of alternate solutions that do not contain c)

1+|SupportCases(c,ci)|

RetentionScorek+1(c) =
∑

ci∈CoveredCases(c)

RetentionScorek(ci)∑
cj∈SupportCases(c,ci)

(RetentionScorek(cj)) + 1
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FootprintCA Algorithm

Modified Smyth’s footprint algorithm∗ to obtain footprintCA set

Modified algorithm uses retention score instead of relative coverage

∗Smyth et al. Footprint-based Retrieval. In Case Based Reasoning Research and
Development 1999
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FootprintCA Algorithm

Cases Retention Score

c1 2

c2 1.75

c3 1.29

c4 1.23

c5 1

FootprintCA set = ∅
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Experiments

Synthetic Datasets

1 y = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +noise

2 y = x41 + x32 + x23 + x4 + cos2(x5) +noise

3 y = sin(x1x2) +
√
x3x4 + cos2(x5) + x6x7 + x8 + x9 + x10 +noise

Each data instance is a case

Each case is assumed to be solved by the combined solution of its
K-nearest cases
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Evaluation - Footprint Size Analysis
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Evaluation - Casebase Coverage Analysis

Casebase Coverage(fp) =
|Cases that are solved by fp|
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Figure: Casebase Coverage by FootprintOR
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Evaluation - Sanity Check

Sanity rate =
|footprint cases ∩ kernel cases|

|kernel cases|
× 100

where,

kernel cases∗ are obtained by repeatedly removing cases that do
not solve any other cases until there are no such cases

kernel cases cover the entire casebase

∗Masse et al. How is meaning grounded in dictionary definitions? Textgraph 2008
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Evaluation - Sanity Check
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Evaluation - Sanity Check

Synthetic Data 2
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Evaluation - Sanity Check

Synthetic Data 3
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FootprintCA in Tutoring Application

Encyclopedic resources like Wikipedia have less pedagogic value

Concepts in Wikipedia (articles) are not arranged in a learning
order

An ideal textbook explains a concept before referring it which
results in a sequential order for learning

Sequencing concepts in Wikipedia may help online learners to
fulfill their learning goal
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FootprintCA in Tutoring Application

For Wikipedia

Cases - Wikipedia articles

Problem Solution Pairs - (Article title A, Definition of article A)

We assume the first sentence of each article as its definition
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FootprintCA in Tutoring Application

For Wikipedia
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FootprintCA in Tutoring Application

An example of casebase network from Wikipedia
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FootprintCA in Tutoring Application

Figure: Wikipedia Concept Network Example

Concepts RetentionScore

Atom 2.0

Matter 1.19

Chemical Element 1.18

Chemical Compound 1.12

Chemical Bond 1

FootprintCA set - {Atom, Chemical Element, Chemical Compound}
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Evaluation on Dictionary and Wikipedia Datasets

ldo
ce wn

wn
+l
do
ce
wik

iA
I

0

50

100

C
ov
er
ag
e
%

ldo
ce wn

wn
+l
do
ce
wik

iA
I

0

50

100

S
an

it
y
R
at
e

FootprintCA FootprintOR

ldoce - Longman dictionary, wn - WordNet, wikiAI - Wikipedia(A. I.
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Sanity rate =
|footprint cases ∩ kernel cases|

|kernel cases|
× 100
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Conclusion

Retention Score orders cases based on retention quality

Modified footprint algorithm estimates competent compressed
casebase using retention score ordering

Experimented the idea in synthetic datasets and tutoring
application
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