Competence Guided Casebase Maintenance for Compositional Adaptation Applications

Ditty Mathew Sutanu Chakraborti

Indian Institute of Technology, Madras

ICCBR 2016

Goal : Maintain a compressed casebase that can solve new problems effectively

Goal : Maintain a compressed casebase that can solve new problems effectively

Competence Guided Casebase Maintenance

- Competence of a CBR system is the range of target problems that the given system can solve
- Competence guided casebase maintenance system retains a case in the casebase if it is useful to solve many problems
- Thus it ensures that the casebase is highly competent in the global sense

Ditty Mathew, Sutanu Chakraborti

^{*}Smyth et al. Footprint-based Retrieval. In Case Based Reasoning Research and Development 1999

Competence Guided Casebase Maintenance

- Competence of a CBR system is the range of target problems that the given system can solve
- Competence guided casebase maintenance system retains a case in the casebase if it is useful to solve many problems
- Thus it ensures that the casebase is highly competent in the global sense
- Footprint-based approach^{*} estimates a competent subset of the casebase

Ditty Mathew, Sutanu Chakraborti

^{*}Smyth et al. Footprint-based Retrieval. In Case Based Reasoning Research and Development 1999

Competence Guided Casebase Maintenance

- Competence of a CBR system is the range of target problems that the given system can solve
- Competence guided casebase maintenance system retains a case in the casebase if it is useful to solve many problems
- Thus it ensures that the casebase is highly competent in the global sense
- Footprint-based approach^{*} estimates a competent subset of the casebase

However, Footprint based approach covers only the situation where a single case is adapted to solve a problem

Ditty Mathew, Sutanu Chakraborti

^{*}Smyth et al. Footprint-based Retrieval. In Case Based Reasoning Research and Development 1999

Competence Guided Casebase Maintenance

Single Case Adaptation

&

Compositional Adaptation

Footprint-based Approach

• $Solves(c, t) \Leftrightarrow c$ can be retrieved and adapted for t

- $Solves(c, t) \Leftrightarrow c$ can be retrieved and adapted for t
- Coverage $(c) = \{c' \in \mathbb{C} : \text{Solves}(c, c')\}$
- Reachability $(c) = \{c' \in \mathbb{C} : \text{Solves}(c', c)\}$

- Solves $(c, t) \Leftrightarrow c$ can be retrieved and adapted for t
- Coverage $(c) = \{c' \in \mathbb{C} : \text{Solves}(c, c')\}$
- Reachability $(c) = \{c' \in \mathbb{C} : \text{Solves}(c', c)\}$

Coverage(c3) = $\{c2,c4\}$ Reachability(c2) = $\{c1,c3\}$ Reachability(c4) = $\{c3,c5,c6\}$

$$\text{RelativeCoverage}(a) = \sum_{b \in \text{Coverage}(a)} \frac{1}{|\text{Reachability}(b)|}$$

Coverage(c3) = $\{c2,c4\}$ Reachability(c2) = $\{c1,c3\}$ Reachability(c4) = $\{c3,c5,c6\}$ RelativeCoverage(c3) = $\frac{1}{2} + \frac{1}{3}$

Cases	Relative Coverage
c1	2.25
c2	1.75
c4	0.5
c3	0.25
c5	0.25

Footprint set $= \emptyset$

Footprint set = \emptyset

Cases	Relative Coverage		
c1	2.25		
c2	1.75		
c4	0.5		
c3	0.25		
c5	0.25		

	Cases	Relative Coverage
	c1	2.25
C5	c2	1.75
	c4	0.5
	c3	0.25
	c5	0.25

In **Compositional Adaptation** applications

- Covers only single case adaptation
- Transitive coverage is not considered

Proposed a case competence model which covers compositional adaptation process (of which the single case adaptation is a special case) • We proposed a measure called retention score which quantifies the retention quality of a case in the casebase

- We proposed a measure called retention score which quantifies the retention quality of a case in the casebase
- **CoveredCases(c)** include all cases that c solves either on its on, or in conjuction with other cases
 - Eg: CoveredCases $(c1) = \{c3, c4\}$
- SupportCases(c_i , c_j) is the set of cases that are required to solve c_i using c_i
 - Eg: SupportCases $(c1,c3) = \{c2\}$

- We proposed a measure called retention score which quantifies the retention quality of a case in the casebase
- **CoveredCases(c)** include all cases that c solves either on its on, or in conjuction with other cases
 - Eg: CoveredCases $(c1) = \{c3, c4\}$
- SupportCases(c_i , c_j) is the set of cases that are required to solve c_i using c_i
 - Eg: SupportCases $(c1,c3) = \{c2\}$

RetentionScore Intuition

- A case has high retention score if it has
 - many covered cases
 - less number of support cases

RetentionScore Intuition (recursive formulation)

- A case has high retention score if it has
 - many covered cases with high retention score
 - less number of support cases with low retention score

$$RetentionScore_{0}(c) = \sum_{c_{i} \in CoveredCases(c)} \frac{1/(1 + No \text{ of alternate solutions that do not contain } c)}{1 + |SupportCases(c,c_{i})|}$$

For estimating $RetentionScore_0(c1)$

• CoveredCases(c1) = $\{c2, c3, c4, c5\}$

$$\label{eq:constraint} \begin{split} \text{RetentionScore}_0(c) = \sum_{c_i \in CoveredCases(c)} \frac{1/(1 + \text{No of alternate solutions that do not contain } c)}{1 + |\text{SupportCases(c,c_i)}|} \end{split}$$

For estimating $RetentionScore_0(c1)$

- CoveredCases(c1) = $\{c2, c3, c4, c5\}$
- For a covered case c4,

 $RetentionScore_{0}(c) = \sum_{c_{i} \in CoveredCases(c)} \frac{1/(1 + No \text{ of alternate solutions that do not contain } c)}{1 + |SupportCases(c,c_{i})|}$

For estimating $RetentionScore_0(c1)$

- CoveredCases(c1)= $\{c2, c3, c4, c5\}$
- For a covered case c4,
 - (c1, c2, c5) form a solution

 $RetentionScore_{0}(c) = \sum_{c_{i} \in CoveredCases(c)} \frac{1/(1 + No \text{ of alternate solutions that do not contain } c)}{1 + |SupportCases(c,c_{i})|}$

For estimating $RetentionScore_0(c1)$

- CoveredCases(c1)= $\{c2, c3, c4, c5\}$
- For a covered case c4,
 - (c1, c2, c5) form a solution
 - (c3) forms another solution

$$\label{eq:RetentionScore} \begin{split} \text{RetentionScore}_0(c) = \sum_{c_i \in \text{CoveredCases}(c)} \frac{1/(1 + \text{No of alternate solutions that do not contain } c)}{1 + |\text{SupportCases}(c, c_i)|} \end{split}$$

For estimating RetentionScore₀(c1)

- CoveredCases(c1)= $\{c2, c3, c4, c5\}$
- For a covered case c4,
 - (c1, c2, c5) form a solution
 - (c3) forms another solution
 - SupportCases(c1,c4) = $\{c2,c5\}$

$$\begin{split} & \operatorname{RetentionScore}_{0}(\mathbf{c}) = \sum_{\mathbf{c}_{i} \in \operatorname{CoveredCases}(\mathbf{c})} \frac{1/(1 + \operatorname{No} \text{ of alternate solutions that do not contain } \mathbf{c})}{1 + |\operatorname{SupportCases}(\mathbf{c}, \mathbf{c}_{i})|} \\ & \operatorname{RetentionScore}_{k+1}(\mathbf{c}) = \sum_{\mathbf{c}_{i} \in \operatorname{CoveredCases}(\mathbf{c})} \frac{\operatorname{RetentionScore}_{k}(\mathbf{c}_{i})}{\sum_{\mathbf{c}_{j} \in \operatorname{SupportCases}(\mathbf{c}, \mathbf{c}_{i})} \left(\operatorname{RetentionScore}_{k}(\mathbf{c}_{j}) \right) + 1} \end{split}$$

- Modified Smyth's footprint algorithm^{*} to obtain $footprint_{CA}$ set
- Modified algorithm uses retention score instead of relative coverage

Ditty Mathew, Sutanu Chakraborti

^{*}Smyth et al. Footprint-based Retrieval. In Case Based Reasoning Research and Development 1999

Cases	Retention Score
c1	2
c2	1.75
c3	1.29
c4	1.23
c5	1

ICCBR 2016

Cases	Retention Score
c1	2
c2	1.75
c3	1.29
c4	1.23
c5	1

Footprint_{CA} set = \emptyset

Cases	Retention Score
c1	2
c2	1.75
c3	1.29
c4	1.23
c5	1

Footprint_{CA} set = \emptyset

Cases	Retention Score
c1	2
c2	1.75
c3	1.29
c4	1.23
c5	1

Cases	Retention Score
c1	2
c2	1.75
c3	1.29
c4	1.23
c5	1

Cases	Retention Score
c1	2
c2	1.75
c3	1.29
c4	1.23
c5	1

Cases	Retention Score
c1	2
c2	1.75
c3	1.29
c4	1.23
c5	1

Cases	Retention Score
c1	2
c2	1.75
c3	1.29
c4	1.23
c5	1

Cases	Retention Score
c1	2
c2	1.75
c3	1.29
c4	1.23
c5	1

Synthetic Datasets

- **1** $y = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10}$ +noise
- 2 $y = x_1^4 + x_2^3 + x_3^2 + x_4 + \cos^2(x_5)$ +noise
- 3 $y = \sin(x_1x_2) + \sqrt{x_3x_4} + \cos^2(x_5) + x_6x_7 + x_8 + x_9 + x_{10}$ +noise

Synthetic Datasets

- **1** $y = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10}$ +noise
- 2 $y = x_1^4 + x_2^3 + x_3^2 + x_4 + \cos^2(x_5)$ +noise
- 3 $y = \sin(x_1x_2) + \sqrt{x_3x_4} + \cos^2(x_5) + x_6x_7 + x_8 + x_9 + x_{10}$ +noise
- Each data instance is a case
- Each case is assumed to be solved by the combined solution of its K-nearest cases

Synthetic Datasets

- **1** $y = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10}$ +noise
- 2 $y = x_1^4 + x_2^3 + x_3^2 + x_4 + \cos^2(x_5)$ +noise
- 3 $y = \sin(x_1x_2) + \sqrt{x_3x_4} + \cos^2(x_5) + x_6x_7 + x_8 + x_9 + x_{10}$ +noise
- Each data instance is a case
- Each case is assumed to be solved by the combined solution of its K-nearest cases

ICCBR 2016

Evaluation - Footprint Size Analysis

ICCBR 2016

Evaluation - Casebase Coverage Analysis

Casebase Coverage
$$(fp) = \frac{|\text{Cases that are solved by } fp|}{\text{Casebase Size}}$$

Figure: Casebase Coverage by Footprint $_{OR}$

Sanity rate =
$$\frac{|\text{footprint cases} \cap \text{kernel cases}|}{|\text{kernel cases}|} \times 100$$

where,

- kernel cases^{*} are obtained by repeatedly removing cases that do not solve any other cases until there are no such cases
- kernel cases cover the entire casebase

^{*}Masse et al. How is meaning grounded in dictionary definitions? Textgraph 2008 Ditty Mathew, Sutanu Chakraborti ICCBR 2016 20 / 30

Synthetic Data 1

Synthetic Data 2

Synthetic Data 3

- Encyclopedic resources like Wikipedia have less pedagogic value
- Concepts in Wikipedia (articles) are not arranged in a learning order
- An ideal textbook explains a concept before referring it which results in a sequential order for learning
- Sequencing concepts in Wikipedia may help online learners to fulfill their learning goal

Atom

From Wikipedia, the free encyclopedia (Redirected from Atoms)

For other uses, see Atom (disambiguation).

An **atom** is the smallest constituent unit of ordinary matter that has the properties of a chemical element.^[1] Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are very small; typical sizes are around 100 pm (a ten-billionth of a meter, in the short scale).^[2] However, atoms do not have well-defined boundaries, and there are different ways to define their size that give different but close values.

Atoms are small enough that attempting to predict their behavior using classical physics - as if they were billiard balls, for example - gives noticeably incorrect predictions due to quantum effects. Through the development of physics, atomic models have incorporated quantum principles to better explain and predict the behavior.

Atom

From Wikipedia, the free encyclopedia (Redirected from Atoms)

For other uses, see Atom (disambiguation).

An **atom** is the smallest constituent unit of ordinary matter that has the properties of a chemical element.^[1] Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are very small; typical sizes are around 100 pm (a ten-billionth of a meter, in the short scale).^[2] However, atoms do not have well-defined boundaries, and there are different ways to define their size that give different but close values.

Atoms are small enough that attempting to predict their behavior using classical physics - as if they were billiard balls, for example - gives noticeably incorrect predictions due to quantum effects. Through the development of physics, atomic models have incorporated quantum principles to better explain and predict the behavior.

Cases - Wikipedia articles

Atom

From Wikipedia, the free encyclopedia (Redirected from Atoms)

For other uses, see Atom (disambiguation).

An **atom** is the smallest constituent unit of ordinary matter that has the properties of a chemical element.^[1] Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are very small; typical sizes are around 100 pm (a ten-billionth of a meter, in the short scale).^[2] However, atoms do not have well-defined boundaries, and there are different ways to define their size that give different but close values.

Atoms are small enough that attempting to predict their behavior using classical physics - as if they were billiard balls, for example - gives noticeably incorrect predictions due to quantum effects. Through the development of physics, atomic models have incorporated quantum principles to better explain and predict the behavior.

Cases - Wikipedia articles

Problem Solution Pairs - (Article title A, Definition of article A)

Atom

From Wikipedia, the free encyclopedia (Redirected from Atoms)

For other uses, see Atom (disambiguation).

An **atom** is the smallest constituent unit of ordinary matter that has the properties of a chemical element.^[1] Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are very small; typical sizes are around 100 pm (a ten-billionth of a meter, in the short scale).^[2] However, atoms do not have well-defined boundaries, and there are different ways to define their size that give different but close values.

Atoms are small enough that attempting to predict their behavior using classical physics - as if they were billiard balls, for example - gives noticeably incorrect predictions due to quantum effects. Through the development of physics, atomic models have incorporated quantum principles to better explain and predict the behavior.

Cases - Wikipedia articles

Problem Solution Pairs - (Article title A, Definition of article A)

We assume the first sentence of each article as its definition

Atom

From Wikipedia, the free encyclopedia (Redirected from Atoms)

For other uses, see Atom (disambiguation).

An **atom** is the smallest constituent unit of ordinary matter that has the properties of a chemical element.^[1] Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are very small; typical sizes are around 100 pm (a ten-billionth of a meter, in the short scale).^[2] However, atoms do not have well-defined boundaries, and there are different ways to define their size that give different but close values.

Atoms are small enough that attempting to predict their behavior using classical physics - as if they were billiard balls, for example - gives noticeably incorrect predictions due to quantum effects. Through the development of physics, atomic models have incorporated quantum principles to better explain and predict the behavior.

$\operatorname{Footprint}_{CA}$ in Tutoring Application

An example of casebase network from Wikipedia

Footprint_{CA} in Tutoring Application

Concepts	RetentionScore
Atom	2.0
Matter	1.19
Chemical Element	1.18
Chemical Compound	1.12
Chemical Bond	1

Figure: Wikipedia Concept Network Example

$\operatorname{Footprint}_{CA}$ in Tutoring Application

Figure: Wikipedia Concept Network Example Footprint_{CA} set - {Atom, Chemical Element, Chemical Compound}

Evaluation on Dictionary and Wikipedia Datasets

ldoce - Longman dictionary, wn - WordNet, wikiAI - Wikipedia(A. I. Category)

Evaluation on Dictionary and Wikipedia Datasets

ldoce - Longman dictionary, wn - WordNet, wikiAI - Wikipedia(A. I. Category)

• Sanity rate =
$$\frac{|\text{footprint cases} \cap \text{kernel cases}|}{|\text{kernel cases}|} \times 100$$

Conclusion

- Retention Score orders cases based on retention quality
- Modified footprint algorithm estimates competent compressed casebase using retention score ordering
- Experimented the idea in synthetic datasets and tutoring application

- Reinartz, T., Ioannis I., Thomas R.: Review and Restore for Case-Base Maintenance. Computational Intelligence, 17.2, 214–234 (2001)
- Smyth, B., Keane, M.T.: Remembering to Forget. In Proceedings of the 14th international joint conference on Artificial intelligence (IJCAI), 377–382 (1995)
- Smyth, B., McKenna, E.: Modelling the Competence of Casebases. In Advances in Case-Based Reasoning, 208–220 (1998)
- Smyth, B., McKenna, E.: Footprint-based retrieval. In Case-Based Reasoning Research and Development, 343–357 (1999)
- Ye, S., Chua, T., Lu, J.: Summarizing Definition from Wikipedia. Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on NLP of the AFNLP, 199–207, (2009)

- Masse, A. B., Chicoisne, G., Gargouri, Y., Harnad, S., Picard, O., Marcotte, O.: How is Meaning Grounded in Dictionary Definitions?. Proceedings of the 3rd Textgraphs Workshop on Graph-Based Algorithms for Natural Language Processing, 17–24, (2008)
- Mathew, D., Eswaran, D., Chakraborti, S.: Towards Creating Pedagogic Views from Encyclopedic Resources. In Proceedings of the Tenth Workshop on Innovative Use of NLP for Building Educational Applications, 190–195 (2015)
- Muller, G., Bergmann, R.: Compositional Adaptation of Cooking Recipes using Workflow Streams. Computer Cooking Contest, Workshop Proceedings ICCBR, (2014)
- Agrawal, R., Chakraborty, S., Gollapudi, S., Kannan A., Kenthapadi K.: Quality of Textbooks: An Empirical Study. ACM Symposium on Computing for Development, (2012)

Thank You!!

Thank You!! Questions??

ICCBR 2016

