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Things	we	thought		
gave	us	security!	

•  Cryptography	
•  Passwords	
•  Information	Flow	Policies	
•  Privileged	Rings	
•  ASLR	
•  Virtual	Machines	and	confinement	
•  Javascript	and	HTML5		

(due	to	restricted	access	to	system	
resouces)	

•  Enclaves	(SGX	and	Trustzone)	
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Micro-Architectural	Attacks	
(can	break	all	of	this)	
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Cache	timing	attack	

Branch	prediction	attack	

Speculation	Attacks	

Row	hammer	

Fault	Injection	Attacks	

….. and	many	more	

cold	boot	attacks	

•  Cryptography	
•  Passwords	
•  Information	Flow	Policies	
•  Privileged	Rings	
•  ASLR	
•  Virtual	Machines	and	confinement	
•  Javascript	and	HTML5		

(due	to	restricted	access	to	system	
resouces)	

•  Enclaves	(SGX	and	Trustzone)	
	

DRAM	Row	buffer	(DRAMA)	



Causes	
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performance	

security	

Most	micro-architectural	attacks	caused	by	
performance	optimizations	
	
Others	due	to	inherent	device	properties	
	
Third,	due	to	stronger	attackers			



Copy	on	Write		
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if (fork() > 0){ 
  // in parent process 
} else{ 
  // in child process 
} 
 

21 

•  Making a copy of a process 
is called forking. 
–  Parent (is the original) 
–   child (is the new process) 

•  When fork is invoked, 
–  child is an exact copy of 

parent 
•  When fork is called all pages 

are shared between parent 
and child 

•  Easily done by copying the 
parent�s page tables 

Physical Memory 

Parent 
Page 
Table 

Child 
Page 
Table 

Virtual Addressing Advantage  
(easy to make copies of a process) 

Child	created	is	an	exact	replica	of	the	parent	process.	
-  Page	tables	of	the	parent	duplicated	in	the	child	
-  New	pages	created	only	when	parent	(or	child)	modifies	data	

-  Postpone	copying	of	pages	as	much	as	possible,	thus	
optimizing	performance	

-  Thus,	common	code	sections	(like	libraries)	would	be		
shared	across	processes.	

		



Process	Tree	

6	

  : 
SSLEncryption() 
  : 

init	

  : 
SSLEncryption() 
  : 

Physical	Memory	

Virtual	Memory	
(process	1)	

Virtual	Memory	
(process	2)	



Interaction	with	the	LLC	
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Processes	

Core	1	

LLC	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
		

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

  : 
SSLEncryption() 
  : 

cache	misses	 slow	
Core	2	

Processes	



Interaction	with	the	LLC	
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  : 
SSLEncryption() 
  : 

cache	hits	

  : 
SSLEncryption() 
  : 

fast	

One	process	can	affect	the	
execution	time	of	another	process	

Processes	

Core	1	

LLC	

Core	2	

Processes	



Flush	+	Reload	Attack	on	LLC	
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Part	of	an	encryption	algorithm	

executed	only	when	ei	=	1	

clflush	Instruction	
Takes	an	address	as	input.	
Flushes	that	address	from	all	caches	
clflush	(line	8)		

Flush+Reload	Attack,	Yuval	Yarom	and	Katrina	Falkner	(https://eprint.iacr.org/2013/448.pdf)	



Flush	+	Reload	Attack	
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  : 
SSLEncryption() 
  : 

  : 
Clflush(line 8) 
  : 

flush	

reload	

access	 victim	

attacker	

Processes	

Core	1	

LLC	

Core	2	

Processes	



Flush+Reload	Attack	
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Countermeasures	
•  Do	not	use	copy-on-write	

–  Implemented	by	cloud	providers	
•  Permission	checks	for	clflush	

–  Do	we	need	clflush?	
•  Non-inclusive	cache	memories	

–  AMD	
–  Intel	i9	versions	

•  Fuzzing	Clocks	
•  Software	Diversification	

–  Permute	location	of	objects	in	memory	(statically	and	dynamically)	
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Cache	Collision	Attacks	
•  External	Collision	Attacks	

–  Prime	+	Probe	

•  Internal	Collision	Attacks	
–  Time-driven	attacks	
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Prime	+	Probe	Attack	
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Core	1	

Last	Level	Cache	

Core	2	

Victim	

SMT	
Core	

L1	Cache	Memory	

Spy	

Victim	 Spy	
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Set	0	

Set	1	

Set	2	

Set	3	

Set	N-2	

Set	N-1	



Prime	Phase	
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	way	0	 way	1	 way	2	 way	3	

Set	0	

Set	1	

Set	2	

Set	3	

While(1){ 
   for(each cache set){ 
     start = time(); 
     access all cache ways 
     end = time(); 
     access_time = end – start 
   } 
   wait for some time 
} 

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
		

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	



Victim	Execution	
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Set	0	

Set	1	
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Set	3	

The	execution	causes	some	of		
the	spy	data	to	get	evicted	

	
	
	

	
	
		

	
		

	
	



Probe	Phase	
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While(1){ 
   for(each cache set){ 
     start = time(); 
     access all cache ways 
     end = time(); 
     access_time = end – start 
   } 
   wait for some time 
} 

	
	
		

	
	

	
	
	

	
	
	

Time	taken	by	sets	that	have	
victim	data	is	more	due	to	the	cache	
misses	



Probe	Time	Plot	

18	

0	 63	

Each	row	is	an	iteration	of	the	while	loop;	darker	shades	imply	higher	memory	access	time	



Prime	+	Probe	in	Cryptography	
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char Lookup[] = {x, x, x, . . . x}; 
 
char RecvDecrypt(socket){ 
     char key = 0x12; 
     char pt, ct; 
 
     read(socket, &ct, 1); 
     pt = Lookup[key ^ ct]; 
     return pt; 
} 

The	attacker	know	the	address	of	Lookup	and	the	ciphertext	(ct)	
The	memory	accessed	in	Lookup	depends	on	the	value	of	key	
Given	the	set	number,	one	can	identify	bits	of	key	^	ct.	

Key	dependent	memory	accesses	



Keystroke	Sniffing	
•  Keystroke	à	interrupt	à	kernel	mode	switch	à	ISR	execution	à	add	to	keyboard	

buffer	à	… à return from interrupt	
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Keystroke	Sniffing	
•  Regular	disturbance	seen	in	Probe	Time	Plot	
•  Period	between	disturbance	used	to	predict	passwords	
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Svetlana	Pinet,	Johannes	C.	Ziegler,	and	F.-Xavier	Alario.	2016.	Typing	Is	Writing:	Linguistic	Properties	Modulate	
Typing	Execution.	Psychon	Bull	Rev	23,	6	



Web	Browser	Attacks	
•  Prime+Probe	in	
–  Javascript	
– pNACL	
– Web	assembly	

22	



Extract	Gmail	secret	key	

23	
https://www.cs.tau.ac.il/~tromer/drivebycache/drivebycache.pdf	



Website	Fingerprinting	
•  Privacy:	Find	out	what	websites	are	being	
browsed.	
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Cross	VM	Attacks	(Cache)	
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Placement

How does the attacker 

co-reside 

in the same physical machine 

as the victim ?

*Ristenpart et.al., Hey, you, get off of my cloud: exploring information leakage in third-party compute 
clouds, CCS- 2009 

PlacementPlacement

A Survey of Micro-Architectural Side Channel Attacks in the Cloud                                                 D.A.Balaraju                                                6/45



Cross	VM	Attacks	(DRAM)	
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Internal	Collision	Attacks	
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(Adversary)	

Victim	



Internal	Collisions	on	a	Cipher	
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Table	 Table	

Part	of	a	Cipher	

P0	,P4	

00 KP ⊕ 44 KP ⊕

4P0P

0K 4K

(Adversary)	
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If	cache	hit	(less	time)	:	

	
	
	
	

4040

4400

PPKK

KPKP

⊕=⊕⇒

⊕=⊕

If	cache	miss	(more	time):	

	
	
	
	

4040

4400

PPKK

KPKP

⊕≠⊕⇒

⊕≠⊕



T	

P0	

K0	
T	

P4	

K4	

Block	Cipher	

Random	
P0			

Cipher	Text	

P4	

Suppose		
(K0	=	00	and	k4	=	50)	

•  P0	=	0,	all	other	inputs	are	
random 		

•  Make	N	time	measurements		
•  Segregate	into	Y	buckets	

based	on	value	of	P4	
•  Find	average	time	of	each	

bucket	
•  Find	deviation	of	each	

average	from	overall	
average	(DOM)	
	
	

	

P4	 Average	
Time	

DOM	

00	 2945.3	 1.8	

10	 2944.4	 0.9	

20	 2943.7	 0.2	

30	 2943.7	 0.2	

40	 2944.8	 1.3	

50	 2937.4	 -6.3	

60	 2943.3	 -0.2	

70	 2945.8	 2.3	

:	 :	 :	

F0	 2941.8	 -1.7	Average	:	2943.57	
Maximum	:	-6.3	4040

PPKK ⊕=⊕
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Implementation	 Difference	of	
Means	

AES	(OpenSSL	0.9.8a	)	 -6.5	

DES	(PolarSSL	1.1.1	)	 +11	

CAMELLIA	(PolarSSL	1.1.1)	 19.2	

CLEFIA	(Ref.	
Implementation	1.0)	

23.4	

Easiness		to	attack	



Speculation	Attacks	
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Some	of	the	slides	motivated	from	Yuval	Yarom’s	talk	on	Meltdown	and	
Spectre	at	the	Cyber	security	research	bootcamp	2018	



Out-of-order	execution	
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load r0, addr1 
mov r2, r1 
add r2, r2, r3 
store r1, add2 
sub r4, r5, r6 

How	instructions	are		
fetched	

sub r4, r5, r6 
store r1, add2 
mov r2, r1 
add r2, r2, r3 
load r0, addr1 

How	they	may	be		
executed	

r0 
r2 
r2 
addr2 
r4 

How	the	results	are		
committed	

inorder	 order	restored	out-of-order	

Out	the	processor	core,	execution	looks	in-order	
Insider	the	processor	core,	execution	is	done	out-of-order	



Speculative	Execution	
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  cmp r0, r1 
  jnz label 
  load r0, addr1 
  mov r2, r1 
  add r2, r2, r3 
  store r1, add2 
  sub r4, r5, r6 
   : 
   : 
   : 
label: 
  more instructions 

  cmp r0, r1 
  jnz label 
  load r0, addr1 
  mov r2, r1 
  add r2, r2, r3 
  store r1, add2 
  sub r4, r5, r6 
   : 
   : 
   : 
label: 
  more instructions 

How	instructions	are		
fetched	 How	instructions	are		

executed	

    
    
  r0 
  r2 
  r2 
  add2 
  r4 
   : 
   : 
   : 
  
 

How	results	are	
committed	when	

speculation	is	correct	
Speculative	execution	
(transient	instructions)	



Speculative	Execution	
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  cmp r0, r1 
  jnz label 
  load r0, addr1 
  mov r2, r1 
  add r2, r2, r3 
  store r1, add2 
  sub r4, r5, r6 
   : 
   : 
   : 
label: 
  more instructions 

  cmp r0, r1 
  jnz label 
  load r0, addr1 
  mov r2, r1 
  add r2, r2, r3 
  store r1, add2 
  sub r4, r5, r6 
   : 
   : 
   : 
label: 
  more instructions 

How	instructions	are		
fetched	 How	instructions	are		

executed	

    
    
    
 
 
 
 
   : 
   : 
   : 
  
 

How	results	are	
committed	when	

speculation	is	incorrect	
Speculative	execution	
(transient	instructions)	



Speculative	Execution	
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  cmp r0, r1 
  div  r0, r1 
  load r0, addr1 
  mov r2, r1 
  add r2, r2, r3 
  store r1, add2 
  sub r4, r5, r6 
   : 
   : 
   : 
label: 
  more instructions 

  cmp r0, r1 
  div r0, r1 
  load r0, addr1 
  mov r2, r1 
  add r2, r2, r3 
  store r1, add2 
  sub r4, r5, r6 
   : 
   : 
   : 
label: 
  more instructions 

How	instructions	are		
fetched	 How	instructions	are		

executed	

    
    
    
 
 
 
 
   : 
   : 
   : 
  
 

How	results	are	
committed	when	

speculation	is	incorrect	
(eg.	If	r1	=	0)	Speculative	execution	



Speculative	Execution		
and	Micro-architectural	State	
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Even	though	line	3	is	not	reached,	the	
micro-architectural	state	is	modified	due	
to	Line	3.		

data=84	



Meltdown	
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Meltdown	
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Meltdown	
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Meltdown	
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Meltdown	
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Meltdown	
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Spectre	
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Slides	motivated	from	Yuval	Yarom’s	talk	on	Meltdown	and	Spectre	at	the	
Cyber	security	research	bootcamp	2018	



Spectre	(variant	1)	
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if (x < array_len){ 
    i = array[x]; 
    y = array2[i * 256]; 
} 

user	space	of	
a	process	

array2	

x	

array	

secret	

array_len	
Cache	memory	



Spectre	(variant	1)	
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if (x < array_len){ 
    i = array[x]; 
    y = array2[i * 256]; 
} 

user	space	of	
a	process	

array2	

x	

array	

secret	

array_len	
Cache	memory	

<	



Spectre	(variant	1)	
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if (x < array_len){ 
    i = array[x]; 
    y = array2[i * 256]; 
} 

user	space	of	
a	process	

array2	

x	

array	

secret	

array_len	
Cache	memory	 Normal	Behavior	



Spectre	(variant	1)	
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if (x < array_len){ 
    i = array[x]; 
    y = array2[i * 256]; 
} 

user	space	of	
a	process	

array2	

x	

array	

secret	

array_len	
Cache	memory	

x	256	

Normal	Behavior	



Spectre	(variant	1)	
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if (x < array_len){ 
    i = array[x]; 
    y = array2[i * 256]; 
} 

user	space	of	
a	process	

array2	

x	

array	

secret	

array_len	
Cache	memory	

x	256	

Normal	Behavior	



Spectre	(variant	1)	
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if (x < array_len){ 
    i = array[x]; 
    y = array2[i * 256]; 
} 

user	space	of	
a	process	

array2	

x	

array	

secret	

array_len	
Cache	memory	

x	256	

Normal	Behavior	



Spectre	(variant	1)	
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if (x < array_len){ 
    i = array[x]; 
    y = array2[i * 256]; 
} 

user	space	of	
a	process	

array2	

x	

array	

secret	

array_len	
Cache	memory	 Under	Attack	

•  x	>	array_len	
•  array_len	not	in	cache	
•  secret	in	cache	memory		



Spectre	(variant	1)	
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if (x < array_len){ 
    i = array[x]; 
    y = array2[i * 256]; 
} 

user	space	of	
a	process	

array2	

x	

array	

secret	

array_len	

Misprediction!	

<	



Spectre	(variant	1)	
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if (x < array_len){ 
    i = array[x]; 
    y = array2[i * 256]; 
} 

user	space	of	
a	process	

array2	

x	

array	

secret	

array_len	

Misprediction!	

<	



Spectre	(variant	1)	
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if (x < array_len){ 
    i = array[x]; 
    y = array2[i * 256]; 
} 

user	space	of	
a	process	

array2	

x	

array	

secret	

array_len	

Cache	hit	found	
only		here	



Spectre	(variant	2)	
Victim’s		

address	space	
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Attacker’s	
address	space	

Some	
gadget	

Jmp	*ebx	Jmp	*eax	

ret	



Spectre	(variant	2)	
Victim’s		

address	space	
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Attacker’s	
address	space	

Some	
gadget	

Jmp	*eax	

ret	

Jmp	*ebx	

context	
switch	



Countermeasures	
For	meltdown:	kpti	(kernel	page	table	isolation)	
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Countermeasures	
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For	Spectre	(variant	1):	compiler	patches	
	use	barriers	(LFENCE	instruction)	to	prevent	speculation	

								static	analysis	to	identify	locations	where	attackers	can	control			
								speculation			
	



Countermeasures	
•  For	Spectre	(Variant	2):	Separate	BTBs	for	each	process	

–  Prevent	BTBs	across	SMT	threads	
–  Prevent	user	code	does	not	learn	from	lower	security	execution	
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Countermeasures	
•  For	all:	at	hardware	

–  Every	speculative	load	and	store	should	bypass	cache	and	stored	in	a	
special	buffer	known	as	speculative	buffer	
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