
Micro-architectural	Attacks	

1	

Chester	Rebeiro	
IIT	Madras	

Things	we	thought		
gave	us	security!	

•  Cryptography	
•  Passwords	
•  Information	Flow	Policies	
•  Privileged	Rings	
•  ASLR	
•  Virtual	Machines	and	confinement	
•  Javascript	and	HTML5		

(due	to	restricted	access	to	system	
resouces)	

•  Enclaves	(SGX	and	Trustzone)	
	

2	

Micro-Architectural	Attacks	
(can	break	all	of	this)	

3	

Cache	timing	attack	

Branch	prediction	attack	

Speculation	Attacks	

Row	hammer	

Fault	Injection	Attacks	

….. and	many	more	

cold	boot	attacks	

•  Cryptography	
•  Passwords	
•  Information	Flow	Policies	
•  Privileged	Rings	
•  ASLR	
•  Virtual	Machines	and	confinement	
•  Javascript	and	HTML5		

(due	to	restricted	access	to	system	
resouces)	

•  Enclaves	(SGX	and	Trustzone)	
	

DRAM	Row	buffer	(DRAMA)	

Causes	

4	

performance	

security	

Most	micro-architectural	attacks	caused	by	
performance	optimizations	
	
Others	due	to	inherent	device	properties	
	
Third,	due	to	stronger	attackers			

Copy	on	Write		

5	

if (fork() > 0){
 // in parent process
} else{
 // in child process
}

21

•  Making a copy of a process
is called forking.
–  Parent (is the original)
–  child (is the new process)

•  When fork is invoked,
–  child is an exact copy of

parent
•  When fork is called all pages

are shared between parent
and child

•  Easily done by copying the
parent�s page tables

Physical Memory

Parent
Page
Table

Child
Page
Table

Virtual Addressing Advantage
(easy to make copies of a process)

Child	created	is	an	exact	replica	of	the	parent	process.	
-  Page	tables	of	the	parent	duplicated	in	the	child	
-  New	pages	created	only	when	parent	(or	child)	modifies	data	

-  Postpone	copying	of	pages	as	much	as	possible,	thus	
optimizing	performance	

-  Thus,	common	code	sections	(like	libraries)	would	be		
shared	across	processes.	

		

Process	Tree	

6	

 :
SSLEncryption()
 :

init	

 :
SSLEncryption()
 :

Physical	Memory	

Virtual	Memory	
(process	1)	

Virtual	Memory	
(process	2)	

Interaction	with	the	LLC	

7	

Processes	

Core	1	

LLC	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
		

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

 :
SSLEncryption()
 :

cache	misses	 slow	
Core	2	

Processes	

Interaction	with	the	LLC	

8	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
		

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

 :
SSLEncryption()
 :

cache	hits	

 :
SSLEncryption()
 :

fast	

One	process	can	affect	the	
execution	time	of	another	process	

Processes	

Core	1	

LLC	

Core	2	

Processes	

Flush	+	Reload	Attack	on	LLC	

9	

Part	of	an	encryption	algorithm	

executed	only	when	ei	=	1	

clflush	Instruction	
Takes	an	address	as	input.	
Flushes	that	address	from	all	caches	
clflush	(line	8)		

Flush+Reload	Attack,	Yuval	Yarom	and	Katrina	Falkner	(https://eprint.iacr.org/2013/448.pdf)	

Flush	+	Reload	Attack	

10	

 :
SSLEncryption()
 :

 :
Clflush(line 8)
 :

flush	

reload	

access	 victim	

attacker	

Processes	

Core	1	

LLC	

Core	2	

Processes	

Flush+Reload	Attack	

11	

Countermeasures	
•  Do	not	use	copy-on-write	

–  Implemented	by	cloud	providers	
•  Permission	checks	for	clflush	

–  Do	we	need	clflush?	
•  Non-inclusive	cache	memories	

–  AMD	
–  Intel	i9	versions	

•  Fuzzing	Clocks	
•  Software	Diversification	

–  Permute	location	of	objects	in	memory	(statically	and	dynamically)	

12	

Cache	Collision	Attacks	
•  External	Collision	Attacks	

–  Prime	+	Probe	

•  Internal	Collision	Attacks	
–  Time-driven	attacks	

13	

Prime	+	Probe	Attack	

14	

Core	1	

Last	Level	Cache	

Core	2	

Victim	

SMT	
Core	

L1	Cache	Memory	

Spy	

Victim	 Spy	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
		

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	way	0	 way	1	 way	2	 way	3	

Set	0	

Set	1	

Set	2	

Set	3	

Set	N-2	

Set	N-1	

Prime	Phase	

15	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
		

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	way	0	 way	1	 way	2	 way	3	

Set	0	

Set	1	

Set	2	

Set	3	

While(1){
 for(each cache set){
 start = time();
 access all cache ways
 end = time();
 access_time = end – start
 }
 wait for some time
}

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
		

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Victim	Execution	

16	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
		

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	way	0	 way	1	 way	2	 way	3	

Set	0	

Set	1	

Set	2	

Set	3	

The	execution	causes	some	of		
the	spy	data	to	get	evicted	

	
	
	

	
	
		

	
		

	
	

Probe	Phase	

17	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
		

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	way	0	 way	1	 way	2	 way	3	

Set	0	

Set	1	

Set	2	

Set	3	

While(1){
 for(each cache set){
 start = time();
 access all cache ways
 end = time();
 access_time = end – start
 }
 wait for some time
}

	
	
		

	
	

	
	
	

	
	
	

Time	taken	by	sets	that	have	
victim	data	is	more	due	to	the	cache	
misses	

Probe	Time	Plot	

18	

0	 63	

Each	row	is	an	iteration	of	the	while	loop;	darker	shades	imply	higher	memory	access	time	

Prime	+	Probe	in	Cryptography	

19	

char Lookup[] = {x, x, x, . . . x};

char RecvDecrypt(socket){
 char key = 0x12;
 char pt, ct;

 read(socket, &ct, 1);
 pt = Lookup[key ^ ct];
 return pt;
}

The	attacker	know	the	address	of	Lookup	and	the	ciphertext	(ct)	
The	memory	accessed	in	Lookup	depends	on	the	value	of	key	
Given	the	set	number,	one	can	identify	bits	of	key	^	ct.	

Key	dependent	memory	accesses	

Keystroke	Sniffing	
•  Keystroke	à	interrupt	à	kernel	mode	switch	à	ISR	execution	à	add	to	keyboard	

buffer	à	… à return from interrupt	

20	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
		

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	way	0	 way	1	 way	2	 way	3	

Set	0	

Set	1	

Set	2	

Set	3	

	
	
	

	
	
		

	
		

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Keystroke	Sniffing	
•  Regular	disturbance	seen	in	Probe	Time	Plot	
•  Period	between	disturbance	used	to	predict	passwords	

21	

Svetlana	Pinet,	Johannes	C.	Ziegler,	and	F.-Xavier	Alario.	2016.	Typing	Is	Writing:	Linguistic	Properties	Modulate	
Typing	Execution.	Psychon	Bull	Rev	23,	6	

Web	Browser	Attacks	
•  Prime+Probe	in	
–  Javascript	
– pNACL	
– Web	assembly	

22	

Extract	Gmail	secret	key	

23	
https://www.cs.tau.ac.il/~tromer/drivebycache/drivebycache.pdf	

Website	Fingerprinting	
•  Privacy:	Find	out	what	websites	are	being	
browsed.	

24	

Cross	VM	Attacks	(Cache)	

25	

Placement

How does the attacker

co-reside

in the same physical machine

as the victim ?

*Ristenpart et.al., Hey, you, get off of my cloud: exploring information leakage in third-party compute
clouds, CCS- 2009

PlacementPlacement

A Survey of Micro-Architectural Side Channel Attacks in the Cloud D.A.Balaraju 6/45

Cross	VM	Attacks	(DRAM)	

26	

Internal	Collision	Attacks	

27	

(Adversary)	

Victim	

Internal	Collisions	on	a	Cipher	

28	

Table	 Table	

Part	of	a	Cipher	

P0	,P4	

00 KP ⊕ 44 KP ⊕

4P0P

0K 4K

(Adversary)	

28	

If	cache	hit	(less	time)	:	

	
	
	
	

4040

4400

PPKK

KPKP

⊕=⊕⇒

⊕=⊕

If	cache	miss	(more	time):	

	
	
	
	

4040

4400

PPKK

KPKP

⊕≠⊕⇒

⊕≠⊕

T	

P0	

K0	
T	

P4	

K4	

Block	Cipher	

Random	
P0			

Cipher	Text	

P4	

Suppose		
(K0	=	00	and	k4	=	50)	

•  P0	=	0,	all	other	inputs	are	
random 		

•  Make	N	time	measurements		
•  Segregate	into	Y	buckets	

based	on	value	of	P4	
•  Find	average	time	of	each	

bucket	
•  Find	deviation	of	each	

average	from	overall	
average	(DOM)	
	
	

	

P4	 Average	
Time	

DOM	

00	 2945.3	 1.8	

10	 2944.4	 0.9	

20	 2943.7	 0.2	

30	 2943.7	 0.2	

40	 2944.8	 1.3	

50	 2937.4	 -6.3	

60	 2943.3	 -0.2	

70	 2945.8	 2.3	

:	 :	 :	

F0	 2941.8	 -1.7	Average	:	2943.57	
Maximum	:	-6.3	4040

PPKK ⊕=⊕

30	

Implementation	 Difference	of	
Means	

AES	(OpenSSL	0.9.8a)	 -6.5	

DES	(PolarSSL	1.1.1)	 +11	

CAMELLIA	(PolarSSL	1.1.1)	 19.2	

CLEFIA	(Ref.	
Implementation	1.0)	

23.4	

Easiness		to	attack	

Speculation	Attacks	

31	

Some	of	the	slides	motivated	from	Yuval	Yarom’s	talk	on	Meltdown	and	
Spectre	at	the	Cyber	security	research	bootcamp	2018	

Out-of-order	execution	

32	

load r0, addr1
mov r2, r1
add r2, r2, r3
store r1, add2
sub r4, r5, r6

How	instructions	are		
fetched	

sub r4, r5, r6
store r1, add2
mov r2, r1
add r2, r2, r3
load r0, addr1

How	they	may	be		
executed	

r0
r2
r2
addr2
r4

How	the	results	are		
committed	

inorder	 order	restored	out-of-order	

Out	the	processor	core,	execution	looks	in-order	
Insider	the	processor	core,	execution	is	done	out-of-order	

Speculative	Execution	

33	

 cmp r0, r1
 jnz label
 load r0, addr1
 mov r2, r1
 add r2, r2, r3
 store r1, add2
 sub r4, r5, r6
 :
 :
 :
label:
 more instructions

 cmp r0, r1
 jnz label
 load r0, addr1
 mov r2, r1
 add r2, r2, r3
 store r1, add2
 sub r4, r5, r6
 :
 :
 :
label:
 more instructions

How	instructions	are		
fetched	 How	instructions	are		

executed	

 r0
 r2
 r2
 add2
 r4
 :
 :
 :

How	results	are	
committed	when	

speculation	is	correct	
Speculative	execution	
(transient	instructions)	

Speculative	Execution	

34	

 cmp r0, r1
 jnz label
 load r0, addr1
 mov r2, r1
 add r2, r2, r3
 store r1, add2
 sub r4, r5, r6
 :
 :
 :
label:
 more instructions

 cmp r0, r1
 jnz label
 load r0, addr1
 mov r2, r1
 add r2, r2, r3
 store r1, add2
 sub r4, r5, r6
 :
 :
 :
label:
 more instructions

How	instructions	are		
fetched	 How	instructions	are		

executed	

 :
 :
 :

How	results	are	
committed	when	

speculation	is	incorrect	
Speculative	execution	
(transient	instructions)	

Speculative	Execution	

35	

 cmp r0, r1
 div r0, r1
 load r0, addr1
 mov r2, r1
 add r2, r2, r3
 store r1, add2
 sub r4, r5, r6
 :
 :
 :
label:
 more instructions

 cmp r0, r1
 div r0, r1
 load r0, addr1
 mov r2, r1
 add r2, r2, r3
 store r1, add2
 sub r4, r5, r6
 :
 :
 :
label:
 more instructions

How	instructions	are		
fetched	 How	instructions	are		

executed	

 :
 :
 :

How	results	are	
committed	when	

speculation	is	incorrect	
(eg.	If	r1	=	0)	Speculative	execution	

Speculative	Execution		
and	Micro-architectural	State	

36	

Even	though	line	3	is	not	reached,	the	
micro-architectural	state	is	modified	due	
to	Line	3.		

data=84	

Meltdown	

37	

U
se
r	s
pa
ce
	

Ke
rn
el
	sp

ac
e	

Virtual	address	
space	of	process	

i = *pointer
y = array[i * 256]

*pointer	

array	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
		

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	way	0	 way	1	 way	2	 way	3	

Set	0	

Set	1	

Set	2	

Set	3	

Cache	Memory	

	
	
	

Normal	Circumstances	

Meltdown	

38	

U
se
r	s
pa
ce
	

Ke
rn
el
	sp

ac
e	

Virtual	address	
space	of	process	

i = *pointer
y = array[i * 256] *pointer	

array	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
		

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	way	0	 way	1	 way	2	 way	3	

Set	0	

Set	1	

Set	2	

Set	3	

Cache	Memory	

Not	normal	Circumstances	

	
	
	

Meltdown	

39	

U
se
r	s
pa
ce
	

Ke
rn
el
	sp

ac
e	

Virtual	address	
space	of	process	

i = *pointer
y = array[i * 256] *pointer	

array	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
		

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	way	0	 way	1	 way	2	 way	3	

Set	0	

Set	1	

Set	2	

Set	3	

Cache	Memory	

Not	normal	Circumstances	

	
	
	

cache	miss	

Meltdown	

40	

U
se
r	s
pa
ce
	

Ke
rn
el
	sp

ac
e	

Virtual	address	
space	of	process	

i = *pointer
y = array[i * 256] *pointer	

array	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
		

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	way	0	 way	1	 way	2	 way	3	

Set	0	

Set	1	

Set	2	

Set	3	

Cache	Memory	

Not	normal	Circumstances	

	
	
	

cache	miss	

Meltdown	

41	

U
se
r	s
pa
ce
	

Ke
rn
el
	sp

ac
e	

Virtual	address	
space	of	process	

i = *pointer
y = array[i * 256] *pointer	

array	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
		

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	way	0	 way	1	 way	2	 way	3	

Set	0	

Set	1	

Set	2	

Set	3	

Cache	Memory	

Not	normal	Circumstances	

	
	
	

cache	miss	

Meltdown	

42	

U
se
r	s
pa
ce
	

Ke
rn
el
	sp

ac
e	

Virtual	address	
space	of	process	

i = *pointer
y = array[i * 256] *pointer	

array	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
		

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	way	0	 way	1	 way	2	 way	3	

Set	0	

Set	1	

Set	2	

Set	3	

Cache	Memory	

Not	normal	Circumstances	

	
	
	

cache	hit	

Spectre	

43	

Slides	motivated	from	Yuval	Yarom’s	talk	on	Meltdown	and	Spectre	at	the	
Cyber	security	research	bootcamp	2018	

Spectre	(variant	1)	

44	

if (x < array_len){
 i = array[x];
 y = array2[i * 256];
}

user	space	of	
a	process	

array2	

x	

array	

secret	

array_len	
Cache	memory	

Spectre	(variant	1)	

45	

if (x < array_len){
 i = array[x];
 y = array2[i * 256];
}

user	space	of	
a	process	

array2	

x	

array	

secret	

array_len	
Cache	memory	

<	

Spectre	(variant	1)	

46	

if (x < array_len){
 i = array[x];
 y = array2[i * 256];
}

user	space	of	
a	process	

array2	

x	

array	

secret	

array_len	
Cache	memory	 Normal	Behavior	

Spectre	(variant	1)	

47	

if (x < array_len){
 i = array[x];
 y = array2[i * 256];
}

user	space	of	
a	process	

array2	

x	

array	

secret	

array_len	
Cache	memory	

x	256	

Normal	Behavior	

Spectre	(variant	1)	

48	

if (x < array_len){
 i = array[x];
 y = array2[i * 256];
}

user	space	of	
a	process	

array2	

x	

array	

secret	

array_len	
Cache	memory	

x	256	

Normal	Behavior	

Spectre	(variant	1)	

49	

if (x < array_len){
 i = array[x];
 y = array2[i * 256];
}

user	space	of	
a	process	

array2	

x	

array	

secret	

array_len	
Cache	memory	

x	256	

Normal	Behavior	

Spectre	(variant	1)	

50	

if (x < array_len){
 i = array[x];
 y = array2[i * 256];
}

user	space	of	
a	process	

array2	

x	

array	

secret	

array_len	
Cache	memory	 Under	Attack	

•  x	>	array_len	
•  array_len	not	in	cache	
•  secret	in	cache	memory		

Spectre	(variant	1)	

51	

if (x < array_len){
 i = array[x];
 y = array2[i * 256];
}

user	space	of	
a	process	

array2	

x	

array	

secret	

array_len	

Misprediction!	

<	

Spectre	(variant	1)	

52	

if (x < array_len){
 i = array[x];
 y = array2[i * 256];
}

user	space	of	
a	process	

array2	

x	

array	

secret	

array_len	

Misprediction!	

<	

Spectre	(variant	1)	

53	

if (x < array_len){
 i = array[x];
 y = array2[i * 256];
}

user	space	of	
a	process	

array2	

x	

array	

secret	

array_len	

Cache	hit	found	
only		here	

Spectre	(variant	2)	
Victim’s		

address	space	

54	

Attacker’s	
address	space	

Some	
gadget	

Jmp	*ebx	Jmp	*eax	

ret	

Spectre	(variant	2)	
Victim’s		

address	space	

55	

Attacker’s	
address	space	

Some	
gadget	

Jmp	*eax	

ret	

Jmp	*ebx	

context	
switch	

Countermeasures	
For	meltdown:	kpti	(kernel	page	table	isolation)	

56	

Countermeasures	

57	

For	Spectre	(variant	1):	compiler	patches	
	use	barriers	(LFENCE	instruction)	to	prevent	speculation	

								static	analysis	to	identify	locations	where	attackers	can	control			
								speculation			
	

Countermeasures	
•  For	Spectre	(Variant	2):	Separate	BTBs	for	each	process	

–  Prevent	BTBs	across	SMT	threads	
–  Prevent	user	code	does	not	learn	from	lower	security	execution	

58	

Countermeasures	
•  For	all:	at	hardware	

–  Every	speculative	load	and	store	should	bypass	cache	and	stored	in	a	
special	buffer	known	as	speculative	buffer	

59	

