Micro-architectural Attacks

¥ Things we thought
\‘zﬂ gave us security!

* Cryptography

* Passwords

* Information Flow Policies

e Privileged Rings

« ASLR

* Virtual Machines and confinement

e Javascript and HTML5
(due to restricted access to system
resouces)

* Enclaves (SGX and Trustzone)

Cryptography

Passwords

Information Flow Policies
Privileged Rings

ASLR

Virtual Machines and confinement

Javascript and HTML5
(due to restricted access to system
resouces)

Enclaves (SGX and Trustzone)

Micro-Architectural Attacks

(can break all of this)

Cache timing attack

Branch prediction attack

Speculation Attacks

Row hammer

Fault Injection Attacks

cold boot attacks

DRAM Row buffer (DRAMA)

..... and many more

Causes

Most micro-architectural attacks caused by
performance optimizations

Others due to inherent device properties

security

Third, due to stronger attackers
performance

Copy on Write

if (fork() > 0){
// in parent process

} else{
// in child process

}

Child created is an exact replica of the parent process.

- Page tables of the parent duplicated in the child

New pages created only when parent (or child) modifies data
- Postpone copying of pages as much as possible, thus

optimizing performance
Thus, common code sections (like libraries) would be

shared across processes.

Parent
Page
Table

Child
Page
Table

Physical Memory

Process Tree

Physical Memory

SSLEncryption ()

Virtual Memory Virtual Memory
(process 2) (process 1)

Interaction with the LLC

SSLEncryption ()

Processes

Processes

cache misses

~
\\

Interaction with the LLC

— .
SSLEncryption ()
Processes Processes .

One process can affect the ">~
execution time of another process'\

Flush + Reload Attack on LLC

Part of an encryption algorithm clflush Instruction

1 function exponent(b, e, m)

2 begin Takes an address as input.

3 xe 1 Flushes that address from all caches
for i — 1 downto 0d :
e i le| =1 domaeo Odo clflush (line 8)

"
X — X~

if (¢; = 1) then
x «xb
9 x < xmod m
10 endif
11 done
12 return x
13 end

4
5
6 x<xmodm
7
8

}executed only whene, =1

Flush+Reload Attack, Yuval Yarom and Katrina Falkner (https://eprint.iacr.org/2013/448.pdf)

Flush + Reload Attack

— .
SSLEncryption ()
Processes Processes .

Victim 5

W

Attacker

n/

Victim $

Attacker

Victim 5

Attacker

:

?

:

10

Probe Time (cycles)

Flush+Reload Attack

sm) T L] T T T Ll T T
Square ¢
Multiply o
Modulo -
. Missed slots
400 |- -
000,8%609%9. 9808000 00000 000.00699,08. 990,000,.°99,00099 0000, 395082 0088e® 8,400%80:,000,
300 o 1
o
200 1
........... TresnOl
100 - -
*2..0%, .20 LA TR AL R P L AL PR LY X ®er . .
Table 1: Time Slots for Bit Sequence
y ow 2910 3020 2930 2090 2950 23960 Seq. | TimeSlots Value Seq. | TimeSlots Value
Time Slot Number 1 3,903-3,906 0 8 3,956-3,960 0
2 3,907-3.916 1 9 3,961-3,969 1
3 3,917-3,926 1 10 | 3.970-3.974 0
4 3,927-3,931 0 1 3,975-3,979 0
5 3,932-3,935 0 12 | 3.980-3,988 1
6 3,936-3,945 1 13 | 3.989-3,998 1
7 3,946-3,955 I

11

Countermeasures

Do not use copy-on-write
— Implemented by cloud providers

Permission checks for clflush
— Do we need clflush?

Non-inclusive cache memories
— AMD

— Intel i9 versions
Fuzzing Clocks

Software Diversification
— Permute location of objects in memory (statically and dynamically)

12

Cache Collision Attacks

External Collision Attacks
— Prime + Probe

Internal Collision Attacks

— Time-driven attacks

13

Prime + Probe Attack

@I Victim | . Spy '

victim | Spy

Prime Phase

While (1) {
for (each cache set) {
start = time () ;
access all cache ways
end = time () ;
access_time = end - start

}

wait for some time

Victim Execution

The execution causes some of ,
the spy data to get evicted ’

16

Probe Phase

While (1) {
for (each cache set) {
start = time () ;
access all cache ways
end = time () ;
access_time = end - start

}

wait for some time

Time taken by sets that have X
victim data is more due to the cache wayO way 1 way 2

misses

17

Probe Time Plot

Each row is an iteration of the while loop; darker shades imply higher memory access time

Prime + Probe in Cryptography

[+ \ &
N
N e

char Lookup[] = {x, x, x, . . . x};

char RecvDecrypt (socket) {
char key = 0x12;

char pt, ct; 7 Key dependent memory accesses

read (socket, &ct, 1); /
pt = Lookupl[key * ct];

return pt;

}
The attacker know the address of Lookup and the ciphertext (ct)
The memory accessed in Lookup depends on the value of key
Given the set number, one can identify bits of key * ct.

19

Keystroke Sniffing

» Keystroke = interrupt = kernel mode switch = ISR execution = add to keyboard
buffer > ... = return from interrupt

Keystroke Sniffing

e Regular disturbance seen in Probe Time Plot
* Period between disturbance used to predict passwords

Ty a d m 1 n 1 2 3 \n
Z 200k
(&
o
o,
o 100k
) [“|IIII‘|||IIII
Q 0 '
1.01 1.02 1.03 1.04 1.05
Time [cycles] 1011

Svetlana Pinet, Johannes C. Ziegler, and F.-Xavier Alario. 2016. Typing Is Writing: Linguistic Properties Modulate

Typing Execution. Psychon Bull Rev 23, 6 21

Web Browser Attacks

* Prime+Probe in

— Javascript
— pNACL
— Web assembly

22

Extract Gmail secret key
® ©® ®

M Encrypted email-teste x { () Watch free Movies Onlin X ' i@} Advertisement x - 0 X

€« C | 8 Secure | https:/mail.google.com/mail/u/0/#inbox/15d4bc329fa77ff ¥ | (B

Go gIe |-| Read a protected message '

Gmail ~ e Thanks for decrypting my super-secret email.
I hope you're reading this on an a very secure platform, like Chromebook, which
COMPOSE Encr isolates the decryption process from other user programs and browser tabs.
I Inbox
gl
Starred =)
Important
Sent Mail
Vi
Drafts
More ~ h
tg
q
kj
Vv Dismiss
q
w
dDZQETIVIXBWaY

kBGdeRQKC2QD2BXFnsPsfT/KfufAICG8hsCQ3yRwhhEyUgluhltxa

https://www.cs.tau.ac.il/~tromer/drivebycache/drivebycache.pdf s

Website Fingerprinting

* Privacy: Find out what websites are being
browsed.

24

Cross VM Attacks (Cache)

VICTIM \TTACKER] ?\NACKER]

! |

|/ | HYPERVISOR
I i SCHEDULER

il I !
Core[l |Core2 | Core3 Core1 | Core2 | Core3

SOCKET 1 1 SOCKET 2

*Ristenpart et.al., Hey, you, get off of my cloud: exploring information leakage in third-party compute

clouds, CCS- 2009 25
BN

Cross VM Attacks (DRAM)

VICTIM TTACKER] !if \TTACKER |

HYPERVISOR

SCHEDULER |

ﬂ' i

! !
Core | Core2 | Core3 Cofe1 | Core2 | Core3

SOCKET 1 . 1 SOCKET 2

S l ‘

Internal Collision Attacks

Victim

(Adversary)

27

Internal Collisions on a Cipher

Part of a Cipher

(Adversary)

If cache hit (less time) : If cache miss (more time):
(P,®K,)=(P,®K,) (P, ®K,)=(P,®K,)
= (K ®K,)=(P ®P,) = (K, ®K,)=(P,®P,)

28

Suppose
(K, =00 and k, = 50)

P, =0, all other inputs are
random

Make N time measurements

Segregate into Y buckets
based on value of P,

Find average time of each
bucket

Find deviation of each
average from overall
average (DOM)

Po P4

Random

i LTI

Blo

Cipher

AR

Cipher Text

Average
Time

00 2945.3 1.8
10 2944.4 0.9
20 2943.7 0.2
30 2943.7 0.2
40 2944.8 1.3
50 29374 -6.3
60 2943.3 -0.2
70 2945.8 2.3
Average : 2943.57 |_1.7

Maximum : -6.3

Joelle 0] ssouisey

Implementation Difference of
Means

AES (OpenSSL 0.9.8a) -6.5
DES (PolarSSL1.1.1) +11
CAMELLIA (PolarSSL 1.1.1) 19.2
CLEFIA (Ref. 23.4

Implementation 1.0)

Frequency Distabution

Frequency Distibution

s 288 5 8
o 838 8 8 28 3

©o 0000000
-88888¢8¢8¢

30

Speculation Attacks

Some of the slides motivated from Yuval Yarom’s talk on Meltdown and
Spectre at the Cyber security research bootcamp 2018

31

Out-of-order execution

How instructions are

How they may be

How the results are

fetched executed committed
load r0, addrl \ sub r4, r5, r6\ r0
mov r2, rl — store rl, addZs] r2
add r2, r2, r3 mov r2, rl - r2
store rl, add2 add r2, r2, r3—] addr?2
sub r4, r5, ro6 load rO, addrl/ r4

inorder out-of-order order restored

Out the processor core, execution looks in-order
Insider the processor core, execution is done out-of-order
32

Speculative Execution

cmp r0, ril
cmp r0, rl Jnz label

Jnz label
load r0, addrl
mov r2, rl
add r2, r2, r3
store rl, add2
sub r4, r5, ro6

tabel: label:
more instructions more instructions

How instructions are))
How instructions are How results are
fetched

executed committed when

, , speculation is correct
Speculative execution

transient instructions 33

Speculative Execution

cmp r0, ril
cmp r0, rl Jnz label

Jnz label
load r0, addrl

mov r2, rl Specllatediresults
add r2, r2, r3

store rl, add2 discal’ded

sub r4, r5, ro6

tabel: label:
more 1nstructions more instructions

How instructions are))
How instructions are How results are
fetched

executed committed when

, , speculation is incorrect
Speculative execution

transient instructions 34

Speculative Execution

cmp r0, ril
div r0, rl

cmp r0, rl
div r0, rl
load r0, addrl

mov r2, rl Specllatediresults
add r2, r2, r3

store rl, add2 discal’ded

sub r4, r5, ro6

tabel: label:
more 1nstructions more instructions

How instructions are

How instructions are How results are
fetched)
executed committed when
speculation is incorrect

Speculative execution (eg. If r1 =0)

Speculative Execution
and Micro-architectural State

| raise_exception();
2 // the line below is never reached
3 access(probe_array[data * 4096]) ;

Access time

data=84
500
L 400
QD
2300
200
0 50 100 150 200

Page

EXECUTED

<instr.>
<instr.>

EXCEPTION
HANDLER <instr.>
<instr.> [¢ xCs o]
<instr.> <instr.>
[Terminate | <instr.>
<instr.>

Even though line 3 is not reached, the
micro-architectural state is modified due
to Line 3.

EXECUTED
OUT OF
ORDER

Virtual address M eltd OoOWwWn

space of process]
Normal Circumstances

1 = *poilnter
array[i * 256]

Kernel space
oS
I

*pointer

User space

array

37

Virtual address Meltd own

space of process

Not normal Circumstances

)
U [} [}
S i = *pointer
(%] .
< *pointer y = array[1 * 256]
GEJ Cache Memory
7 /7T T TTTTTTTTnTTTTTTTTTTTTTTTTToTIIooooooooTTooes 9
{ Set 0
| Sett 1
. | ik
8 | Set 3
n ! 1 1 1 : :
5 - | | L
o —Y : |
- | |
array :
i | ~ wayo wayl way2 way3

Virtual address Meltd own

space of process

Not normal Circumstances

W
O
S i = *pointer
(V5] '
< *pointer y = array[1 * 256]
GEJ Cache Memory
7 e Y\
{ Set 0
| Sett 1
Q o Selt 2
o Set 3
S | i ; . i |
5 N | | i |
o —Y : |
- : |
array :
- cache miss
E- way 0 way 1 way 2 way 3

Virtual address Meltd own

space of process

Not normal Circumstances

W
O
S i = *pointer
(V5] '
< *pointer y = array[1 * 256]
GEJ Cache Memory
7 e Y\
{ Set 0
| Sett 1
Q o Selt 2
o Set 3
o | | | . i |
5 N | | i |
o —Y : |
- : |
array :
— \ ;
N | cache miss © wayo wayl way2 way3

Virtual address Meltd own

space of process

Not normal Circumstances

)
O
S i = *pointer
(%] .
< *pointer y = array[1 * 256]
GEJ Cache Memory
7 o N
{ Set 0
i Sett 1
© ok Selt 2
o : :
o : Set 3
> 1 E 1 I I I i
5 N | | i |
- i |
“atray
A cache miss ~ wayo wayl way2 way3

Virtual address Meltd own

space of process

Not normal Circumstances

W
O
S i = *pointer
(%] .
< *pointer y = array[1 * 256]
GEJ Cache Memory
7 o N
{ Set 0
| Sett 1
© ok Selt 2
o : :
> i =
(V5] 1 1 1 1 I
— = : 1 I 1 : :
QL v : ! J ! :
- €« : l
array
| cache hit © wayo0 wayl way2 way3

Spectre

Slides motivated from Yuval Yarom’s talk on Meltdown and Spectre at the
Cyber security research bootcamp 2018

43

user space of
a process

array_le

secret

array

array2

Cache memory

Spectre (variant 1)

if (x
i
Yy
}

<

array len) {
array|[x];
array2[i * 256];

44

user space of
a process

array_le

secret

array

array2

Spectre (variant 1)

Cache memory

if (x
i
Yy
}

<

array len) {
array|[x];
array2[i * 256];

45

user space of
a process

secret

array

array2

Cache memory

Spectre (variant 1)

Normal Behavior

if (x
> i
Yy

}

<

array len) {
array|[x];
array2[i * 256];

46

user space of
a process

array_le
Cache memory

secret

array

Spectre (variant 1)

Normal Behavior

if (x

i

> Y
}

<

array len) {
array|[x];
array2[i * 256];

47

user space of
a process

array_le
Cache memory

secret

array

Spectre (variant 1)

Normal Behavior

if (x
i
Yy

<

array len) {
array|[x];
array2[i * 256];

48

user space of

a process .
Spectre (variant 1) |
array_le Normal Behavior
Cache memory
if (x < array len) {
secret i = array[x]’;
y = array2[i * 256];
¥
array P :raken
il Not taken :
= /7 o Sa—
Taken (1) A ——ken (10
Taken
— > Not taken
array2 redicted (01}2
X 256 ot Take Tt N
Not taken N .~
_—

49

user space of
a process

Spectre (variant 1)

Cache memory Under Attack

if (x < array len) {
-+t=» 1 = arrayl[x];
y = array2[i * 256];

e x>array_len
e array_len notin cache
e secret in cache memory

50

user space of
a process

Spectre (variant 1)

array_|

if (x < array len) {
= array2[i * 256];

array

Misprediction!

array2

51

user space of
a process

Spectre (variant 1)

array_le

if (x < array len) {
i = arrayl[x];
Yy array2[i * 256];

secret

—

array

Misprediction!

array2

52

user space of
a process

Spectre (variant 1)

array_le

if (x < array len) {
i = arrayl[x];

secret =
y = array2[i * 256];

}

array

array2

/ Cache hit found J

only here

Spectre (variant 2)

Attacker’s Victim’s
address space address space

Some
gadget

o e N L L '[aken A\

\“ Not taken LZ ; \/

Predlcted) Predicted
Taken ot taken

Not taken
redicted (01 @ed (00
m . ot Take Taken ot Tak:
AT

54

Spectre (variant 2)

Attacker’s
address space

Victim’s
address space

(AP 'l:aken y R

il Nottaken LA/
@D) Predicted
Taken ot taken

Not taken
redicted (01 @ed (00
ot Take Taken ot Taken

Not takeﬁ'ﬂ._

55

Countermeasures

For meltdown: kpti (kernel page table isolation)

Kernel page-table isolation

User space User space User space
User mode Kernel mode User mode

Kernel mode

Countermeasures

For Spectre (variant 1): compiler patches
use barriers (LFENCE instruction) to prevent speculation
static analysis to identify locations where attackers can control
speculation

57

Countermeasures

For Spectre (Variant 2): Separate BTBs for each process
— Prevent BTBs across SMT threads
— Prevent user code does not learn from lower security execution

58

Countermeasures

For all; at hardware

— Every speculative load and store should bypass cache and stored in a
special buffer known as speculative buffer

59

