
Trusted	Execution	Environments	

1	

Chester	Rebeiro	
IIT	Madras	

Some	of	the	slides	borrowed	from	Intel;	CDACH;	ARM	



Previously	in	SSE…	
•  We	looked	at	techniques	to	run	an	untrusted	code	safely	

2	

Run	Program	Here	
If	misbehaves	

Kill	it	

System	

Confinement	



Today	in	SSE…	
•  We	now	look	at	how	to	run	sensitive	code	in	an	untrusted	environment	

–  Besides	other	applications,	the	OS	can	also	be	untrusted.	
–  Attackers	can	probe	hardware	

•  What	to	worry	about:		
–  Code	/	Data	of	the	sensitive	app	gets	read	/	modified	by	the	system	

3	

Run	Sensitive	
Program	Here	

Untrusted	System	

Trusted	Execution	
Environment	



Basic	Problem	
(Ring	Architecture)	

4	



Basic	Problem	
(Ring	Architecture)	

5	



Invasive	Attacks	

6	



Trusted	Execution	Environments	
Achieve	confidentiality	and	integrity	even	when	the	OS	is	compromised!	

•  ARM	:	Trustzone	(trusted	execution	environments)	
•  Intel	:	SGX	(enclaves)	

7	



ARM	Trustzone	

8	

Trustzone	Security	Whitepaper,	ARM	
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/
PRD29GENC-009492C_trustzone_security_whitepaper.pdf	



ARM	System	on	Chips	

9	

System Security 

2-2 Copyright © 2005-2009 ARM Limited. All rights reserved. PRD29-GENC-009492C
Non-Confidential Unrestricted Access

2.1 System security
System designs for embedded devices are complicated, including multiple independent 
processor cores, secondary bus masters such as DMA engines, and large numbers of 
memory and peripheral bus slaves. In addition to these functional components there is 
typically a parallel system infrastructure that provides invasive and non-invasive debug 
capabilities, as well as component boundary scan and Built-In-Self-Test (BIST) 
facilities.

Each of these subsystems in the platform has to be designed and integrated in such a 
way that it works with the security solution, rather than developing each sub-system 
independently of the security requirements. If the threat model for a device indicates 
that it needs to protect against shack attacks, there is no point securing only the 
functional part of the system. An attacker with unrestricted access to a debug port can 
bypass many of the functional protections that may exist. 

This section aims to look at some of the security architectures that have historically been 
available on the market, and where they have strengths and weaknesses.

Figure 2-1 : A simplified schematic of a typical cellular handset SoC design

Media System Main Processor3G Modem

FlashDRAM
JTAG +

Boundary 
Scan

Trace Display KeypadAerial

Memory 
Controller

Memory 
Controller

Debug 
Access Port

Trace
Port

Display 
Controller KMIADC / DAC

ARM1156

DSP

Cortex-R4

DSP

GSM Modem

DMA DMA

AudioDE

Mali200

Level 3 Cache

Cortex-A8

L2 Cache

Interrupt 
Controller

Debug Bus

AXI to APB 
Bridge

AXI Bus

Timers

RTC

Watchdog

Clock Ctrl.

Boot
ROM SRAM

AXI Bus



ARM	Trustzone	
(Main	Idea)	

10	

Hardware	and	Software	partitioned	into	two:	
Normal	and	Secure	worlds	
	
A	single	hardware	processor	timesliced	
between	secure	and	normal	worlds	
	
Secure	world	provides	an	environment	that	
supports	confidentiality	and	integrity.	
-  Can	prevent	software	attacks	
-  Cannot	prevent	invasive	attacks	
	
	

TrustZone Hardware Architecture 

3-6 Copyright © 2005-2009 ARM Limited. All rights reserved. PRD29-GENC-009492C
Non-Confidential Unrestricted Access

3.3 Processor architecture
The most significant architectural changes apply to the ARM processors that implement 
the architectural Security Extensions. Currently these are the:
• ARM1176JZ(F)-S™ processor
• Cortex™-A8 processor
• Cortex-A9 processor
• Cortex-A9 MPCore™ processor

Each of the physical processor cores in these designs provides two virtual cores, one 
considered Non-secure and the other Secure, and a mechanism to robustly context 
switch between them, known as monitor mode. The value of the NS bit sent on the main 
system bus is indirectly derived from the identity of the virtual core that performed the 
instruction or data access. This enables trivial integration of the virtual processors into 
the system security mechanism; the Non-secure virtual processor can only access 
Non-secure system resources, but the Secure virtual processor can see all resources. 

Figure 3-1 : Modes in an ARM core implementing the Security Extensions

3.3.1 Switching worlds

The two virtual processors execute in a time-sliced fashion, context switching through 
a new core mode called monitor mode when changing the currently running virtual 
processor.

The mechanisms by which the physical processor can enter monitor mode from the 
Normal world are tightly controlled, and are all viewed as exceptions to the monitor 
mode software. The entry to monitor can be triggered by software executing a dedicated 
instruction, the Secure Monitor Call (SMC) instruction, or by a subset of the hardware 
exception mechanisms. The IRQ, FIQ, external Data Abort, and external Prefetch Abort 
exceptions can all be configured to cause the processor to switch into monitor mode.

Normal world
privileged modes

Secure worldNormal world

Monitor mode

Normal world
user mode

Secure world
privileged modes

Secure world
user mode



A	Typical	Trustzone	Application	

11	



Switching	Worlds	
•  Execution	in	time	sliced	manner	(Secure	<->	Normal)	
•  New	mode	(monitor	mode)	that	is	invoked	during	switching	modes	
•  Mode	switching		

–  triggered	by	secure	monitoring	call	(SMC)	instruction	
–  certain	hardware	exceptions	(interrupts,	aborts)	

•  Monitor	Mode:	saves	state	of	the	current	world	and	restores	the	state	of	the	
world	being	switched	to.	Restoration	by	return-from-exception.		

•  NS	Bit:	in	configuration	register	indicates	secure	/	normal	operating	mode.	
	NS	=	1	->	indicates	non-secure	(normal)	mode	

12	



NS	Bit	extends	beyond	the	chip	

13	

System Security 

2-2 Copyright © 2005-2009 ARM Limited. All rights reserved. PRD29-GENC-009492C
Non-Confidential Unrestricted Access

2.1 System security
System designs for embedded devices are complicated, including multiple independent 
processor cores, secondary bus masters such as DMA engines, and large numbers of 
memory and peripheral bus slaves. In addition to these functional components there is 
typically a parallel system infrastructure that provides invasive and non-invasive debug 
capabilities, as well as component boundary scan and Built-In-Self-Test (BIST) 
facilities.

Each of these subsystems in the platform has to be designed and integrated in such a 
way that it works with the security solution, rather than developing each sub-system 
independently of the security requirements. If the threat model for a device indicates 
that it needs to protect against shack attacks, there is no point securing only the 
functional part of the system. An attacker with unrestricted access to a debug port can 
bypass many of the functional protections that may exist. 

This section aims to look at some of the security architectures that have historically been 
available on the market, and where they have strengths and weaknesses.

Figure 2-1 : A simplified schematic of a typical cellular handset SoC design

Media System Main Processor3G Modem

FlashDRAM
JTAG +

Boundary 
Scan

Trace Display KeypadAerial

Memory 
Controller

Memory 
Controller

Debug 
Access Port

Trace
Port

Display 
Controller KMIADC / DAC

ARM1156

DSP

Cortex-R4

DSP

GSM Modem

DMA DMA

AudioDE

Mali200

Level 3 Cache

Cortex-A8

L2 Cache

Interrupt 
Controller

Debug Bus

AXI to APB 
Bridge

AXI Bus

Timers

RTC

Watchdog

Clock Ctrl.

Boot
ROM SRAM

AXI Bus



NS	Bit	extends	beyond	the	chip	

14	

System Security 

2-2 Copyright © 2005-2009 ARM Limited. All rights reserved. PRD29-GENC-009492C
Non-Confidential Unrestricted Access

2.1 System security
System designs for embedded devices are complicated, including multiple independent 
processor cores, secondary bus masters such as DMA engines, and large numbers of 
memory and peripheral bus slaves. In addition to these functional components there is 
typically a parallel system infrastructure that provides invasive and non-invasive debug 
capabilities, as well as component boundary scan and Built-In-Self-Test (BIST) 
facilities.

Each of these subsystems in the platform has to be designed and integrated in such a 
way that it works with the security solution, rather than developing each sub-system 
independently of the security requirements. If the threat model for a device indicates 
that it needs to protect against shack attacks, there is no point securing only the 
functional part of the system. An attacker with unrestricted access to a debug port can 
bypass many of the functional protections that may exist. 

This section aims to look at some of the security architectures that have historically been 
available on the market, and where they have strengths and weaknesses.

Figure 2-1 : A simplified schematic of a typical cellular handset SoC design

Media System Main Processor3G Modem

FlashDRAM
JTAG +

Boundary 
Scan

Trace Display KeypadAerial

Memory 
Controller

Memory 
Controller

Debug 
Access Port

Trace
Port

Display 
Controller KMIADC / DAC

ARM1156

DSP

Cortex-R4

DSP

GSM Modem

DMA DMA

AudioDE

Mali200

Level 3 Cache

Cortex-A8

L2 Cache

Interrupt 
Controller

Debug Bus

AXI to APB 
Bridge

AXI Bus

Timers

RTC

Watchdog

Clock Ctrl.

Boot
ROM SRAM

AXI Bus



Memory	Management	

15	

CPU	Core	 Memory	(RAM)	

VA											NSTID	

	
				MMU	
	
	

page	tables	

page	tables	

Physical	address	

Physical	address	

•  Non	Secure	Table	Identifier	
					current	state	of	the	processor	
					(0	if	secure	world	/	1	if	normal		
					world	
	
•  If	NSTID	=	1	then	force	NS	bit	to	1	
	

Virtual	address	(VA)	have	an	
extra	bit	(33-rd	bit)	to		



Memory	Management	

16	

CPU	Core	 Memory	(RAM)	

VA		NSTID	

VA											NSTID	

PA						NS	

	
				MMU	
	
	

page	tables	

page	tables	

Physical	address	

Physical	address	

VA		NSTID	 PA						NS	

VA		NSTID	 PA						NS	

VA		NSTID	 PA						NS	

TLB	
Page	walk	only		
on	TLB	miss	

TLB	stores	NSTID	and	NS	bit	
per	entry	



Memory	Management	

17	

CPU	Core	 Memory	(RAM)	

VA		NSTID	

VA											NSTID	

PA						NS	

	
				MMU	
	
	

page	tables	

page	tables	

Physical	address	

Physical	address	

VA		NSTID	 PA						NS	

VA		NSTID	 PA						NS	

VA		NSTID	 PA						NS	

TLB	
Page	walk	only		
on	TLB	miss	

Secure	world	page	tables	
can	map	to	normal	world	

memory	



Memory	Management	

18	

CPU	Core	 Memory	(RAM)	

VA		NSTID	

VA											NSTID	

PA						NS	 	
				MMU	
	
	

page	tables	

page	tables	

Access	RAM	only	
on	cache	miss	

VA		NSTID	 PA						NS	

VA		NSTID	 PA						NS	

VA		NSTID	 PA						NS	

TLB	
Page	walk	only		
on	TLB	miss	

Tag			NS	 cache	line	

Tag		NS	 cache	line	

Tag		NS	 cache	line	
Tag	NS	 cache	line	

Cache	Memory		

PA	



Memory	Management	Units	
•  Two	virtual	MMUs	(one	for	each	mode)	

–  Two	page-tables	active	simultaneously	
•  A	single	TLB	present	

–  A	tag	in	each	TLB	entry	determines	the	mode	
(Normal	and	Secure	TLB	entries	may	co-exist;	this	allows	for	quicker	switching	of	
modes)	

–  alternatively	the	monitor	may	flush	the	TLB	whenever	switching	mode	
•  A	single	cache	is	present	

–  Tags	(again)	in	each	line	used	to	store	state	
–  Any	non-locked	down	cache	line	can	be	evicted	to	make	space	for	new	data	
–  A	secure	line	load	can	evict	a	non-secure	line	load	(and	vice-versa)	

19	



Secure	and	Normal	Devices	

20	

System Security 

2-2 Copyright © 2005-2009 ARM Limited. All rights reserved. PRD29-GENC-009492C
Non-Confidential Unrestricted Access

2.1 System security
System designs for embedded devices are complicated, including multiple independent 
processor cores, secondary bus masters such as DMA engines, and large numbers of 
memory and peripheral bus slaves. In addition to these functional components there is 
typically a parallel system infrastructure that provides invasive and non-invasive debug 
capabilities, as well as component boundary scan and Built-In-Self-Test (BIST) 
facilities.

Each of these subsystems in the platform has to be designed and integrated in such a 
way that it works with the security solution, rather than developing each sub-system 
independently of the security requirements. If the threat model for a device indicates 
that it needs to protect against shack attacks, there is no point securing only the 
functional part of the system. An attacker with unrestricted access to a debug port can 
bypass many of the functional protections that may exist. 

This section aims to look at some of the security architectures that have historically been 
available on the market, and where they have strengths and weaknesses.

Figure 2-1 : A simplified schematic of a typical cellular handset SoC design

Media System Main Processor3G Modem

FlashDRAM
JTAG +

Boundary 
Scan

Trace Display KeypadAerial

Memory 
Controller

Memory 
Controller

Debug 
Access Port

Trace
Port

Display 
Controller KMIADC / DAC

ARM1156

DSP

Cortex-R4

DSP

GSM Modem

DMA DMA

AudioDE

Mali200

Level 3 Cache

Cortex-A8

L2 Cache

Interrupt 
Controller

Debug Bus

AXI to APB 
Bridge

AXI Bus

Timers

RTC

Watchdog

Clock Ctrl.

Boot
ROM SRAM

AXI Bus



Interrupts	

21	

All	interrupts	routed	to	monitor	first.	
Interrupts	can	be	configured	to	go	either	to	the	normal	world	or	secure	world.	
		

User	Code	

Privileged	Code	

User	Code	

Privileged	Code	

Monitor	

IRQ	

IRQ	

Normal	world	 Secure	world	

IRQ	



Interrupts	

22	

All	interrupts	routed	to	monitor	first.	
Interrupts	can	be	configured	to	go	either	to	the	normal	world	or	secure	world.	
		

User	Code	

Privileged	Code	

User	Code	

Privileged	Code	

Monitor	

IRQ	

IRQ	

Normal	World	
Interrupt	Vector	Table	

Monitor	Interrupt	
Vector	Table	

Secure	World		
Interrupt	Vector	Table	

Normal	world	 Secure	world	



Software	Architecture	
•  The	minimal	secure	world	can	just	have	implementations	of	synchronous	code	

libraries	
•  Typically	has	an	entire	operating	system	

–  Qualcomm’s	QSEE;	Trustonics	Kinibi;	Samsung	Knox;	Genode	
–  The	secure	OS	could	be	tightly	couples	to	the	rich	OS	so	that	a	priority	of	a	task	in	the	

rich	OS	gets	mapped	accordingly	in	the	secure	OS	
–  Advantage	of	having	a	full	OS	is	that	we	will	have	complete	MMU	support	

•  Intermediate	Options	

23	



Secure	Boot	

24	

Why?	
	
Attackers	may	replace	the	flash	software	with	a	malicious	version,	compromising	
the	entire	system.	
	
	
How?	
	
Secure	chain	of	trust.		
Starting	from	a	root	device	(root	of	trust)	that	cannot	be	easily	tampered	
	



Secure	Boot	Sequence	

25	

Secure	Boot	Sequence	

21	

On	chip	ROM	based	Bootloader	
	
May	be	internal	to	the	CPU;	
Ini,alizes	cri,cal	peripherals,	
memory	controllers	
	
Device	bootloader	
	
Stored	on	Flash	device	(typically)	
Ini,alize	cri,cal	peripherals	
	
Secure	opera,ng	system	
	
Rich	opera,ng	system	
	
	



Chain	of	Trust	

26	

Inherently	secure	
Component	

(PUF/	TPM/	onchipROM)		
Root	of	trust	

Boot	loader	

check	
signature	

Secure	OS	

check	
signature	

Rich	OS	

check	
signature	

Trustlet	

Trustlet	

Trustlet	

check	signature	

check	signature	
check	signature	



Intel’s	SGX	

27	
Innovative	Instructions	and	Software	Model	for	Isolated	Execution,	HASP	2013	(F.	McKeen	et.	al.)	



Reduced	Attack	Surface	with	SGX	

28	

Malware	that	can	subvert	any	one	of	
app,	OS,	VMM,	or	hardware	
can	steal	secrets		

App	 App	 App	

OS	

VMM	

Hardware	

Attack	Surface	

Normally	

Small	attack	surface	(App	+	Hardware)	
Malware	cannot	steel	secrets	inspite		
of	subverting	OS,	BIOS,	VMM,	most	
parts	of	the	App,	etc.	

With	SGX	enabled	

App	 App	 App	

OS	

VMM	

Hardware	



Enclaves	
(reverse	sandbox)	

29	

•  Enclave	has	its	own	code	and	data	areas	
						Provides	confidentiality	and	integrity	
						With	controlled	entry	points	
	
•  However,	enclave	code	and	data	cannot	

be	accessed	from	outside	the	enclave	not	
even	by	the	operating	system.	

•  TCS:	Thread	control	Structure		
						(SGX	supports	multi-threading;	
								one	TCS	for	each	thread	supported)	

Entry	Table	

Enclave	
Heap	
Enclave	
Stack	
Enclave	
Code	

TCS	



Enclave	Properties	
•  Achieves	confidentiality	and	integrity	

–  Tampering	of	code	/	data	is	detected	and	access	to	tampered	code	/	data	is	
prevented.	

•  Code	outside	enclave	cannot	access	code/data	inside	the	enclave	
•  Even	though	OS	is	untrusted,	it	should	still	be	able	to	manage	page	

translation	and	page	tables	of	the	enclave	
•  Enclave	code	and	data	

–  Enclave	code	and	data	is	in	the	clear	when	in	the	CPU	package	(eg.	Registers	/	
caches),	but	unauthorized	access	is	prevented	

–  Enclave	code	and	data	is	automatically	encrypted	it	leaves	the	CPU	package	
	

30	



Physical	Memory	
•  PRM	–	processor	related	memory	allocated	by	

the	BIOS.	Access	to	PRM	is	blocked	by	external	
agents	such	as	DMA,	graphics	engine,	etc.)	
–  To	the	other	devices,	this	range	is	treated	as	non-

existent	memory	
–  All	SGX	enclaves	mapped	into	the	PRM	

•  EPC	Pages:	Enclave	page	cache	holds	enclaves	
from	any	application.		
–  Divided	into		4KB	pages	
–  If	an	EPC	page	is	valid,	it	either	contains	an	SGX	enclave	

page	or	EPCM	(EPC	micro-architecture	structure)	

31	

RAM	

PRM	 EPC	

EPCM	



SGX	Enclaves	and	PRM	

32	

RAM	
Virtual	Memory	 Virtual	Memory	

Process	1	 Process	2	
Virtual	address	to	
physical	address	
mapping.	Done	by	
OS	and	MMU	



Physical	Memory	
•  EPCM:	Enclave	page	cache	map	

–  	one	for	each	EPC	
–  Used	by	hardware	for	access	control	
–  It	stores	management	related	aspects	for	the	

corresponding	EPC	
•  Aspects	such	as	valid	/	invalid;	r/w/x	permissions	
•  Type	of	page	
•  Virtual	address	range	through	which,	the	EPC	can	be	

accessed	
•  It	is	an	additional	layer	of	security	compared	to	legacy	

paging	and	segmentation	since	we	do	not	trust	the	OS	

33	

RAM	

PRM	 EPC	

EPCM	



Physical	Memory	
•  SECS:	SGX	Enclave	Control	Store	

–  One	for	each	enclave	
–  4KB	(present	in	an	EPC)		
–  Contains	global	metadata	about	the	enclave	

•  EPC	pages	that	are	used	
–  Mapping	information	
–  Crypto	log	of	each	used	EPC	page	

•  Range	of	protected	addresses	used	by	the	enclave	
•  32	/	64	bit	operating	mode	
•  Debug	access	

34	

RAM	

PRM	 EPC	

SECS	



EPC	Encryption	
•  Hardware	unit	that	encrypts	and	protects	integrity	
of	each	EPC	

35	



Memory		
Access	

36	

x	



Application	Execution	Flow	

37	

App	built	with	trusted	and	untrusted	part	
	
1.  Untrusted	part	creates	and	executes	the	

enclave	
1.  Enclave	is	placed	in	the	EPC.	It	is	encrypted	and	

trusted	

2.  Trusted	function	is	called	and	execution	is	
transferred	into	the	enclave	

3.  Trusted	function	executes	
4.  Trusted	function	returns	
5.  Application	continues	execution	



Enclave	Life	Cycle	
(creation)	

ECREATE	Instruction	
•  Creates	a	SECS	(SGX	enclave	control	

structure)	
–  Contains	global	information	about	the	enclave	

•  System	software	can	choose	where	(in	the	
process	virtual	space)	the	enclave	should	
be	present	

•  Also	specifies	
–  Operating	mode	(32/64	bit)	
–  Processor	features	that	is	supported	
–  Debug	allowed	

	

38	

Process	



Enclave	Life	Cycle	
(adding	pages)	

EADD	Instruction	
•  System	software	should	select	free	ECS	page	
•  EADD	will	initialize	EPCM	with	

–  Page	type	(TCS	/	REG)	
–  Linear	address	that	will	access	the	page	
–  RWX	permissions	
–  Associate	the	page	in	SECS	structure	

•  EADD	will	then	record	EPCM	information	in	a	
crypto	log	stored	in	the	SECS	
–  This	is	the	measurement	of	the	enclave	
–  Used	for	gaining	assurance	

•  Copy	4K	bytes	of	data	from	unprotected	
memory	into	the	enclave	

39	

Process	



Enclave	Life	Cycle	
(measuring	pages)	

EEXTEND	
•  Measure	a	256	byte	region	in	an	EPC	page	

–  This	region	is	specified	by	the	developer	
–  The	measurement	comprising	of	a	64	bit	address	

and	a	256	byte	information	in	the	SECS	
–  16	invocations	EEXTEND	needed	to	measure	the	

whole	page	

•  Correct	construction	of	the	enclave	would	
result	in	a	matching	with	the	enclave	
owner	
–  The	enclave	owner’s	signature	is	stored	in	a	

SIGSTRUCT	structure	
–  This	can	also	be	remotely	verified	

40	

Process	



Enclave	Life	Cycle	
(initializing	pages)	

EINIT	
•  Should	be	invoked	after	all	pages	have	

been	added	
•  Verify	that	the	signature	matches	that	of	

the	owner’s	signature	
•  If	EINIT	is	successful,	it	allows	the	enclave	

to	be	entered	

41	

Process	



Enclave	Life	Cycle	
(enter/exit)	

42	

Process	invokes	the	enclave	through	
pre-defined	entry	points	using	EENTER	
instruction	
	
EENTER		
-  Changes	made	to	enclave	mode	
-  Need	to	know	the	location	to	transfer		

control	and	location	where	to	save	
state	in	case	of	an	interrupt	

-  Defines	an	Asynch.	Exit	pointer,		
which	where	IRET	returns	to	after	
servicing	an	interrupt	
-  It	is	outside	the	enclave	
-  And	typically	will	have	an	instruction	ERESUME	

	



Entry	into	the	Enclave	
•  Set	TCS	to	busy	
•  Change	mode	to	enclave	mode	
•  Save	state	of	SP,	BP,	etc.	for	return	in	case	of	async.	Exit	
•  Save	AEP	
•  Transfer	control	from	outside	the	enclave	to	inside	
	
	

43	



Exit	from	Enclave	
•  EEXIT	

-  Clear	enclave	mode	and	flush	TLB	entries	
-  Mark	TCS	as	free.	
-  Transfer	control	outside	the	enclave	

44	



Asynchronous	Exit	(AEX)	
•  Occurs	when	an	interrupt	/	exit	occurs	
•  Processor	state	is	securely	saved	inside	the	enclave	and	replaced	with	

synthetic	states	
•  AEP	pushed	onto	the	stack	

(AEP	is	a	location	outside	the	enclave	where	execution	goes	to	after	IRET)	
•  After	AEX	completes,	the	logical	processor	is	no	longer	in	enclave	mode	

•  Resuming	after	an	interrupt	
–  EERESUME	instruction	is	invoked,	which	restores	all	registers	
–  Typically	EERESUME	is	present	at	the	AEP	location	

•  Resuming	after	a	fault	that	occurred	in	the	enclave?	
–  Eg.	A	divide	by	zero	

45	



Instruction	set	Extensions	for	SGX	
•  Privileged	Instructions	

–  Creation	related:	to	create,	add	pages,	extend,	initialize,	remove	
enclave	

–  Paging	related:	evict	page,	load	an	evicted	page	
•  User	level	instructions	

–  Enter	enclave,	leave	enclave	
–  Interrupt	related:	asynchronous	exit,	resume	

46	



Attestation	
•  system	proves	to	somebody	else	that	it	has	a	particular	SGX	enclave	
•  Two	attestation	techniques	

–  Intra	machine	(prove	to	another	enclave	in	the	same	machine)	
–  Inter	machine	(prove	to	a	third	party)	

•  Makes	use	of	a	register	called	MRENCLAVE	
–  Contains	the	SHA-256	hash	of	an	internal	log	that	measures	the	activity	done	

by	the	enclave	
•  The	log	contains	the	pages	(code,	data,	stack,	heap)	in	the	enclave	
•  Relative	position	of	the	pages	in	the	enclave	
•  Security	flags	associated	with	the	pages	

47	Innovative	Technology	for	CPU	Based	Attestation	and	Sealing,	HASP	2015,	Ittai	Anati	et	al	



Intra-Platform	Enclave	Attestation	

•  (1)	Enclave	A	obtains	enclave	B’s	MRENCLAVE	
•  Enclave	A	invokes	EREPORT	together	with	B’s	MRENCLAVE	to	create	a	signed	report	destined	for	enclave	B	

–  Enclave	contains:	attributes	associated	with	the	enclave		
–  Attributes	of	the	Trusted	Control	Block		
–  MAC	(produced	by	a	key	called	report	key,	which	is	known	only	to	the	hardware	and	Enclave	B)	

48	

Enclave	
B	

Enclave	
A	

1	1	



Intra-Platform	Enclave	Attestation	

•  (1)	Enclave	A	obtains	enclave	B’s	MRENCLAVE	
•  Enclave	A	invokes	EREPORT	together	with	B’s	MRENCLAVE	to	create	a	signed	report	destined	for	enclave	B	
•  (2)	Enclave	A	sends	the	report	to	B,	via	an	untrusted	channel	
•  Enclave	B	calls	EGETKEY	to	retrieve	the	report	key,	re-computes	the	MAC	accompanying	the	REPORT.	If	there	is	a	match	

with	the	MAC,	then	the	enclave	is	indeed	running	on	the	same	machine.	
•  Once	the	MACs	have	been	verified,	Enclave	B	can	verify	Enclave	A’s	report	using	the	MRENCLAVE	it	just	received	

49	

Enclave	
B	

Enclave	
A	

1	2	



Inter-Platform	Enclave	Attestation	

•  Quoting	enclave	and	external	system	uses	asymmetric	crypto.	to	transfer	
a	quote	to	the	external	system	

50	

Quoting	
Enclave	

Enclave	
A	

1	2	

External	
Challenger	


