Trusted Execution Environments

Some of the slides borrowed from Intel;: CDACH: ARM

Previously in SSE...

* We looked at techniques to run an untrusted code safely

System

Run Program Here
If misbehaves
Kill it

Confinement

Today in SSE...

We now look at how to run sensitive code in an untrusted environment
— Besides other applications, the OS can also be untrusted.
— Attackers can probe hardware

What to worry about:
— Code / Data of the sensitive app gets read / modified by the system

Untrusted System

Trusted Execution
Environment

Basic Problem
(Ring Architecture)

Protected Mode (rings) protects OS from apps ...

Privileged Code

... and apps from each other ...

Basic Problem
(Ring Architecture)

Protected Mode (rings) protects OS from apps ...

- Malicious

App

Code
Privileged Code
... and apps from each other ...

... UNTIL a malicious app exploits a flaw to gain full
privileges and then tampers with the OS or other apps

Invasive Attacks

CPU,
ALU Input and
Registers Memory | | 5 tput(1/0)
And controls

4 »
................................. bbb
[Data|Bu |

§ + +
o Address B{s | :

: L
bl Control Bus | i

 sng wesks

Trusted Execution Environments

Achieve confidentiality and integrity even when the OS is compromised!

* ARM : Trustzone (trusted execution environments)
* Intel : SGX (enclaves)

ARM Trustzone

Trustzone Security Whitepaper, ARM
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492¢/
PRD29GENC-009492C trustzone security whitepaper.pdf

ARM System on Chips

i GSMModem | i 3GModem | | Media System | { Main Processor |
1 1 1 - 1 1
1 e 1 e 1 : [1 1
: ARM1156 - L. : Cortex-R4 - L. : AudioDE - . : Cortex-A8 «- .
] ! -] ! - 1 h - 1 I h -
1 o . . .
1| psp ®1: 1| psp [®1: || maizoo €]:)| L2cache 7
! ok ok Dl NE
: N : V] L___‘:____I PR S T
1 DMA ‘,_ =1 DMA ‘,_ . . .
1 1
1 1 . 1 1 . . Interrupt .
--——;----' . --——;----' . . Controller .
T +AX| Bus T * .
v Eanasn .--.-:--.--‘V-l-.-:.DebugBus--.-l----.---.--.l--.--
Level 3 Cach Boot | I | gray | RN
evel ache ROM . . Br|dge
. . A
: : | Clock Ctrl. [«»[RTC
AXI Bus . .
; v \ 4 h 4 ‘ Watchdog ‘4——% Timers ‘
Memory Memory Trace Debug Display
Controller Controller Port Access Port Controller ‘ADC / DAC ‘4——% KMI
A A A A
A\ 4 A\ 4 \ 4 A\ 4 A 4 A\ 4
JTAG +
DRAM Flash Trace Boundary Display Aerial Keypad
Scan

ARM’
ARM Cortex-A8
AT401-LA-02000-r1pl
TSMC 90nm G
P60902 Wir 7

o A DS

‘l

Ve, 11

ARM Trustzone
(Main Idea)

Hardware and Software partitioned into two:
Normal and Secure worlds T T T Nommalword Tt pTTTTT TS Secureworld =TT T T

Secure world
user mode

1

I I

I I

I I

Normal world ! !
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I 1
I I
I I
I I
I

I

I

I

user mode

-~

A single hardware processor timesliced
between secure and normal worlds

Secure world
privileged modes

Normal world
privileged modes

I
Lﬁ? Monitor mode 4—T

supports confidentiality and integrity.
- Can prevent software attacks
- Cannot prevent invasive attacks

1
1
1
1
1
1
1
1
1
1
. . I
Secure world provides an environment that !
1
1
1
1
1
1
1
1
1
1

A Typical Trustzone Application

Trusted User Interface

TEE SDK

PIN request

TEE

Trusted
Application

Unlock Master Secret = L

11

Switching Worlds

Execution in time sliced manner (Secure <-> Normal)
New mode (monitor mode) that is invoked during switching modes

Mode switching
— triggered by secure monitoring call (SMC) instruction
— certain hardware exceptions (interrupts, aborts)

Monitor Mode: saves state of the current world and restores the state of the
world being switched to. Restoration by return-from-exception.

NS Bit: in configuration register indicates secure / normal operating mode.
NS =1 -> indicates non-secure (normal) mode

12

NS Bit extends beyond the chip

| "GSM Modem ': 1”7 3G Modem ': I"Media System !
1 1 1 .
1 e 1 e 1 : [
: ARM1156 - L. : Cortex-R4 - L. : AudioDE - - .
1 H I HE I I .
1 ! . . .
1| pbsp ®1: 1| psp [®1: || maizoo €7 :
| Y S o T B 3
: H I : H I [—— P TSR T | S
1 DMA ‘,_ =1 DMA ‘,_ . . 3
1 1
1 1 T 1 . . Interrupt .
""';""' . ""';""' . . Controller 3
T +AX| Bus T * T 3
"¢ |-.--"¢---:--.--"¢-.-:.DebugBus--.-l----.------.l-----
s s AXI to APB
Boot . .
Level 3 Cache ROM : SRAM : Bridge
. . A
| '1 : : | Clock Ctrl. [«»[RTC
v u v 4 \ 4 ‘ Watchdog ‘4——% Timers ‘
Memory Memory Trace Debug Display
Controller Controller Port Access Port Controller ‘ADC / DAC ‘4——% KMI ‘
A A A A
A\ 4 A\ 4 \ 4 A\ 4 A\ 4 \ 4
JTAG +
DRAM Flash Trace Boundary Display Aerial Keypad
Scan

NS Bit extends beyond the chip

i GSMModem | i 3GModem | | Media System |

1 1 1 .

1 mm 1 mm 1 : aw

ARM1156 Cortex-R4 AudioDE

: <} : ortex <} : udio <} :

1 H I HE I I .

1 Do : : :

1| pbsp ®1: 1| psp [®1: || maizoo €7 :

1 ‘ . 1 ‘ . | 1 . .

: H I : H I [—— P TSR T | S

rooma HE 1 o (¥ : :

1 : T : . . Interrupt .

"'";"" . "'";"" . . Controller 3
- +AX| Bus - * r E

SRAM

AXI to APB
Bridge

2
‘ Clock Ctrl. ‘4—

\ 4 h 4 ‘ Watchdog ‘4——% Timers ‘
Debug Display
Access Port Controller ‘ADC / DAC ‘4——% KMI ‘
A A A
A\ 4 A 4 A 4 A\ 4
JTAG +
Boundary Display Aerial Keypad
Scan

14

Memory Management

e Non Secure Table Identifier
current state of the processor CPU Core Memory (RAM)

(0 if secure world / 1 if normal
world

Virtual address (VA) have an
extra bit (33-rd bit) to

e |f NSTID =1 then force NS bitto 1

VA NSTID

page tables

Physical address
MMU

page tables

Physical address

Memory Management

TLB stores NSTID and NS bit CPU Core Memory (RAM)
per entry
VA NSTID

page tables

VA NSTID| PA NS
VA NSTID| PA NS Physical address
MMU
L S |

VA NSTID| PA NS
VA NSTID| PA NS page tables

TLB
Page walk only Physical address
on TLB miss

16

Memory Management

CPU Core Memory (RAM)

Secure world page tables
can map to normal world
memory

VA NSTID

page tables

VA NSTID| PA NS
VA NSTID| PA NS
VA NSTID| PA NS
VA NSTID| PA NS

Physical address

MMU

page tables

TLB

Page walk only
on TLB miss

Physical address

17

Cache Memory

Tag NS |cache line

Tag NS | cache line

Memory Management

CPU Core

Tag NS [cache line

Tag NS |cache line

VA NSTID| PA NS
VA NSTID| PA NS
VA NSTID| PA NS
VA NSTID| PA NS

PA

VA NSTID

page tables

MMU

page tables

TLB

Page walk only
on TLB miss

1
1
1
R fp——
1
1
1
1
1
1
1
1

— i — —

—_—— = ——
1

Memory (RAM)

Access RAM only
on cache miss

N
y
Vi AY

\
1
1 3
1 \‘
1

1
" I_\—————_

1
1

1
‘ J

\

18

Memory Management Units

 Two virtual MMUs (one for each mode)
— Two page-tables active simultaneously

 Asingle TLB present

— Atagin each TLB entry determines the mode
(Normal and Secure TLB entries may co-exist; this allows for quicker switching of
modes)

— alternatively the monitor may flush the TLB whenever switching mode

* Asingle cache is present
— Tags (again) in each line used to store state
— Any non-locked down cache line can be evicted to make space for new data
— Asecure line load can evict a non-secure line load (and vice-versa)

19

Secure and Normal Devices

-.--".--.---.--‘V-:-.-;DebugBus- .-:----.------.&-.-

mafled s s nnannnn
NasEEEEEREEERE R R R R E A

AXI to APB
Bridge

Boot
ROM

| sRAM

2
Clock Ctrl. 4—‘ RTC
| > |

v \ 4 ‘ Watchdog ‘4——% Timers ‘
Trace Debug Display
Port Access Port Controller ‘ADC / DAC ‘4——% KMI ‘
A A A
A\ 4 \ 4 A\ 4 A\ 4 \ 4
JTAG +
Trace Boundary Display Aerial Keypad
Scan

Interrupts

Normal world Secure world
User Code User Code
Privileged Code Privileged Code
A A
IRQ Monitor IRQ
IRQ

All interrupts routed to monitor first.
Interrupts can be configured to go either to the normal world or secure world.

Interrupts

Normal world Secure world Secure World

Interrupt Vector Table
User Code User Code
Normal World
Interrupt Vector Table > Privileged Code Privileged Code €
y § A
€
IRQ Monitor
¢ l
T Monitor Interrupt
IRQ Vector Table

All interrupts routed to monitor first.
Interrupts can be configured to go either to the normal world or secure world.

22

Software Architecture

The minimal secure world can just have implementations of synchronous code
libraries
Typically has an entire operating system

— Qualcomm’s QSEE; Trustonics Kinibi; Samsung Knox; Genode

— The secure OS could be tightly couples to the rich OS so that a priority of a task in the
rich OS gets mapped accordingly in the secure OS

— Advantage of having a full OS is that we will have complete MMU support
Intermediate Options

23

Secure Boot

Why?

Attackers may replace the flash software with a malicious version, compromising
the entire system.

How?

Secure chain of trust.
Starting from a root device (root of trust) that cannot be easily tampered

24

Secure Boot Sequence

T TRich Execution Environment | | T Trusted Execution Environment |

(REE)

On chip ROM based Bootloader

May be internal to the CPU;

Initializes critical peripherals,
memory controllers

Device bootloader

Stored on Flash device (typically)
Initialize critical peripherals

Secure operating system

| I
I I
I Normal I
I (B I
I I
I 7 |
I I
| nehos TEEOS |
I i I
ey ==
Cortex-A Hardware Platform (
eFUSE

Rich operating system

ROM Boot CPU Boot
Loader

25

Root of trust

Chain of Trust

26

Intel’s SGX

Innovative Instructions and Software Model for Isolated Execution, HASP 2013 (F. McKeen et. al.)

27

Reduced Attack Surface with SGX

Normally

—_——— g

Attack Su rfacel |

Malware that can subvert any one of
app, OS, VMM, or hardware
can steal secrets

With SGX enabled

OS
VMM

I

Haraware

Small attack surface (App + Hardware)
Malware cannot steel secrets inspite
of subverting OS, BIOS, VMM, most
parts of the App, etc.
28

Enclave

User Process

Enclave
Enclave

Enclave

Enclave

Enclaves
(reverse sandbox)

Enclave has its own code and data areas
Provides confidentiality and integrity
With controlled entry points

However, enclave code and data cannot
be accessed from outside the enclave not

even by the operating system.

TCS: Thread control Structure
(SGX supports multi-threading;
one TCS for each thread supported)

29

Enclave Properties

* Achieves confidentiality and integrity

— Tampering of code / data is detected and access to tampered code / data is
prevented.

 Code outside enclave cannot access code/data inside the enclave

 Even though OS is untrusted, it should still be able to manage page
translation and page tables of the enclave

* Enclave code and data

— Enclave code and data is in the clear when in the CPU package (eg. Registers /
caches), but unauthorized access is prevented

— Enclave code and data is automatically encrypted it leaves the CPU package

30

Physical Memory

* PRM - processor related memory allocated by
the BIOS. Access to PRM is blocked by external
agents such as DMA, graphics engine, etc.)

— To the other devices, this range is treated as non-

- existent memory

PRM EPC — Al SGX enclaves mapped into the PRM

 EPC Pages: Enclave page cache holds enclaves
EPCM from any application.
— Divided into 4KB pages

— If an EPC page is valid, it either contains an SGX enclave
page or EPCM (EPC micro-architecture structure)

RAM

31

SGX Enclaves and PRM

Process 1 Process 2

Virtual address to
physical address
mapping. Done by
OS and MMU

RAM

Virtual Memory Virtual Memory _,

Physical Memory

e EPCM: Enclave page cache map
— one for each EPC

— Used by hardware for access control

— It stores management related aspects for the
corresponding EPC
* Aspects such as valid / invalid; r/w/x permissions
* Type of page

EPCM * Virtual address range through which, the EPC can be
accessed

PRM "~ EPC

* Itis an additional layer of security compared to legacy
paging and segmentation since we do not trust the OS

RAM

Physical Memory

e SECS: SGX Enclave Control Store

— One for each enclave
— 4KB (present in an EPC)
— Contains global metadata about the enclave

SECS

* EPC pages that are used

S—

PRM EPC — Mapping information

— Crypto log of each used EPC page

* Range of protected addresses used by the enclave
» 32 /64 bit operating mode
* Debug access

RAM

34

EPC Encryption

 Hardware unit that encrypts and protects integrity
of each EPC

Joo3Iks93 7w

35

Memory
Access

Application Execution Flow

App built with trusted and untrusted part

1. Untrusted part creates and executes the

enclave
1. Enclaveis placed in the EPC. It is encrypted and
trusted

2. Trusted function is called and execution is
transferred into the enclave

3. Trusted function executes
Trusted function returns
5. Application continues execution

Untrusted part of App

1- App creates an
enclave. —]
2- App calls a trusted
function. -
5- App continues its
normal execution.

App

Enclave
(Trusted part of App)

3- The trusted
function processes the
security-sensitive data.

4- The trusted
function return- @l

Privileged System Software, OS, Hypervisor, SMM, and
BIOS

@_

37

Enclave Life Cycle
(creation)

ECREATE Instruction
Process

* Creates a SECS (SGX enclave control
structure)
— Contains global information about the enclave
* System software can choose where (in the
process virtual space) the enclave should
be present
* Also specifies

— Operating mode (32/64 bit) Privileged System Code
— Processor features that is supported

OS, VMM, BIOS, SMM, ...

— Debug allowed

Enclave Life Cycle
(adding pages)

EADD Instruction
* System software should select free ECS page

* EADD will initialize EPCM with
— Page type (TCS / REG)
— Linear address that will access the page

Process

— RWX permissions
— Associate the page in SECS structure

e EADD will then record EPCM information in a
crypto log stored in the SECS

— This is the measurement of the enclave

. Privileged System Code
— Used for gaining assurance 0sS, VMM BIOS, SMM, .

* Copy 4K bytes of data from unprotected
memory into the enclave

Enclave Life Cycle
(measuring pages)

EEXTEND
* Measure a 256 byte region in an EPC page

— This region is specified by the developer

— The measurement comprising of a 64 bit address
and a 256 byte information in the SECS

— 16 invocations EEXTEND needed to measure the
whole page
e Correct construction of the enclave would
result in a matching with the enclave

owner
_ Je o : : Privileged System Code
The enclave owner’s signature is stored in a OS, VMM, BIOS. SMM. .

SIGSTRUCT structure
— This can also be remotely verified

Process

40

Enclave Life Cycle
(initializing pages)

EINIT
Process

* Should be invoked after all pages have
been added

e Verify that the signature matches that of
the owner’s signature

* |f EINIT is successful, it allows the enclave
to be entered

Privileged System Code

OS, VMM, BIOS, SMM, ... |

41

Enclave Life Cycle

(enter/exit)

Process invokes the enclave through
pre-defined entry points using EENTER

Application

instruction

EENTER
- Changes made to enclave mode
- Need to know the location to transfer
control and location where to save
state in case of an interrupt
- Defines an Asynch. Exit pointer,
which where IRET returns to after
servicing an interrupt
- Itis outside the enclave
- And typically will have an instruction ERESUME

Privileged System Code
OS, VMM, BIOS, SMM, ...

42

Entry into the Enclave

Set TCS to busy

Change mode to enclave mode

Save state of SP, BP, etc. for return in case of async. Exit
Save AEP

Transfer control from outside the enclave to inside

43

Exit from Enclave

EEXIT

- Clear enclave mode and flush TLB entries
- Mark TCS as free.
- Transfer control outside the enclave

44

Asynchronous Exit (AEX)

Occurs when an interrupt / exit occurs

Processor state is securely saved inside the enclave and replaced with
synthetic states

AEP pushed onto the stack
(AEP is a location outside the enclave where execution goes to after IRET)

After AEX completes, the logical processor is no longer in enclave mode

Resuming after an interrupt
— EERESUME instruction is invoked, which restores all registers
— Typically EERESUME is present at the AEP location

Resuming after a fault that occurred in the enclave?
— Eg. Adivide by zero

45

Instruction set Extensions for SGX

* Privileged Instructions

— Creation related: to create, add pages, extend, initialize, remove
enclave

— Paging related: evict page, load an evicted page

 User level instructions
— Enter enclave, leave enclave
— Interrupt related: asynchronous exit, resume

46

Attestation

* system proves to somebody else that it has a particular SGX enclave

 Two attestation techniques
— Intra machine (prove to another enclave in the same machine)
— Inter machine (prove to a third party)

* Makes use of a register called MRENCLAVE

— Contains the SHA-256 hash of an internal log that measures the activity done
by the enclave
* The log contains the pages (code, data, stack, heap) in the enclave
* Relative position of the pages in the enclave
» Security flags associated with the pages

Innovative Technology for CPU Based Attestation and Sealing, HASP 2015, Ittai Anati et al 47

Intra-Platform Enclave Attestation

(1) Enclave A obtains enclave B’s MRENCLAVE
Enclave A invokes EREPORT together with B’'s MRENCLAVE to create a signed report destined for enclave B

- Enclave contains: attributes associated with the enclave
- Attributes of the Trusted Control Block
- MAC (produced by a key called report key, which is known only to the hardware and Enclave B)

48

Intra-Platform Enclave Attestation

(1) Enclave A obtains enclave B’s MRENCLAVE
Enclave A invokes EREPORT together with B’'s MRENCLAVE to create a signed report destined for enclave B
(2) Enclave A sends the report to B, via an untrusted channel

Enclave B calls EGETKEY to retrieve the report key, re-computes the MAC accompanying the REPORT. If there is a match
with the MAC, then the enclave is indeed running on the same machine.

Once the MACs have been verified, Enclave B can verify Enclave A’s report using the MRENCLAVE it just received

49

Inter-Platform Enclave Attestation

T

. Quoting
Enclave

* Quoting enclave and external system uses asymmetric crypto. to transfer
a quote to the external system

50

