
Confinement
(Running Untrusted Programs)

Chester Rebeiro

Indian Institute of Technology Madras

Untrusted	Programs	

Possible	Solutions	
•  Air	Gapped	Systems	
•  Virtual	Machines	
•  Containers	
																(all	are	coarse	grained	solutions)	

2	

Untrusted	Application	
•  Entire	Application	untrusted		
•  Part	of	application	untrusted	

–  Modules	or	library	untrusted	

Vulnerable	Applications	
•  A	vulnerability	in	one	application	compromises	the	entire	application	

3	

Operating	System	

Confinement	
(using	RPCs)	

•  Run	each	module	as	a	different	process	(different	address	spaces)	
–  Use	RPCs	to	communicate	between	modules	
–  Hardware	ensures	that	one	process	does	not	affect	another	

4	

Operating	System	

Web	Server	Web	Server	

Typical	Web	Server	

5	

•  single	address	space	holds	multiple	web	servers	
•  Every	new	client	creates	a	new	process	
•  HTTP	interfaces	restrict	access	to	the	database	server	
•  Security	achieved	by	coarse	grained	access	control	mechanisms	in	the	data	base	server	
•  A	vulnerability	in	any	component	can	ripple	through	the	entire	system	

Web	browser	
(Client)	

Web	Server	

mod_ssl	

mod_php	Connection	

Core	 mod_python	

Database	Server	

Web	browser	
(Client)	

Web	browser	
(Client)	

Apache	Webserver	
(Dependency	Graph)	

6	

P1	 P2	

S1	 S2	

T1	 T3	T2	 T4	

U1	 U2	

Every	child	process	created		
by	Apache,	Includes	all	services	

Px	pool	of	processes	
Sx	services	access	private	databases	
Tx	state	data	
Ux	users	
	
An	edge	from	(a,	b)	implies	b’s	dependence	
on	a.		If	a	gets	compromised	
b	also	will	be	compromised.		
	
	

A	compromised	process	
(Apache	Webserver)	

7	

P1	 P2	

S1	 S2	

T1	 T3	T2	 T4	

U1	 U2	 A	compromised	child	process	will	
compromise	all	services	

Known	attacks	on	Web	Servers	
•  A	bug	in	one	website	can	lead	to	an	attack	in	another	website	

example:	Amazon	holds	credit	card	numbers.	If	it	happens	to	share	the	same	web	server	as	
other	users	this	could	lead	to	trouble.	

	
	

•  Some	known	attacks	on	Apache’s	webserver	and	its	standard	modules	
–  Unintended	data	disclosure	(2002)		

	 	users	get	access	to	sensitive	log	information	
–  Buffer	overflows	and	remote	code	execution	(2002)	
–  Denial	of	service	attacks	(2003)	
–  Due	to	scripting	extensions	to	Apache	

8	

Principle	of	Least	Privileges	

•  Decompose	system	into	subsystems	
•  Grant	privileges	in	fine	grained	manner	
•  Minimal	access	given	to	subsystems	to	access	system	data	and	resources	
•  Narrow	interfaces	between	subsystems	that	only	allow	necessary	operations	
•  Assume	exploit	more	likely	to	occur	in	subsystems	closer	to	the	user	(eg.	

network	interfaces)	
•  Security	enforcement	done	outside	the	system	(eg.	by	OS)	

9	

Aspects	of	the	system	most	vulnerable	to	attack	are	the	least	useful	to	
attackers.	

OKWS	Webserver	
(designed	for	least	privileges)	

	
	
	
	

10	

Do	not	expose	more	code/
services	than	required!	

Tradeoff	security	vs	performance	

	
each	independent	service	runs	in	an	
independent	process	
	

Each	process	should	run	as	a	different	
unprivileged	user.	

Prevent	interfering	with	
other	processes			

Each	service	should	run	in	a	separate	
chroot	jail	

Allow	access	to	only	necessary	
files.	

Narrow	set	of	database	access	privileges	 Prevent	unrequired	
access	to	the	DB	service	

https://www.usenix.org/event/usenix04/tech/general/full_papers/krohn/krohn.pdf	
	
	

Achieving	Confinement	
Through	Unix	Tools	
•  chroot:	define	the	file	system	a	process	can	see	

	if	system	is	compromised,	the	attacker	has	limited	access	to	the	files.	Therefore,	cannot	get	
further	privileges	

•  setuid:	set	the	uid	of	a	process	to	confine	what	it	can	do	
	if	system	runs	as	privileged	user	and	is	compromised,	the	attacker	can	manipulate	other	
system	processes,	bind	to	system	ports,	trace	system	calls,	etc.	

	
•  Passing	file	descriptors:	a	privileged	parent	process	can	open	a	file	and	

pass	the	descriptor	to	an	unprivileged	child	
(don’t	have	to	raise	the	privilege	of	a	child,	to	permit	it	to	access	a	specific	high	privileged	file)	

11	

Strict	Confinement	

12	

P1	 P2	

S2	

T1	 T3	T2	 T4	

U1	 U2	

No	sharing	of	services	or	processes;	
Strong	confinement;		
Low	performance	due	to	too	many	
processes	
(1	process	per	user)	

S1	

If	a	user	process	is	compromised,	
then	data	corresponding	to	that	
process	is	compromised	

OKWS	

13	

P1	 P2	

S2	

T1	 T3	T2	 T4	

U1	 U2	 Px	pool	of	processes	
Sx	services	access	private	databases	
Tx	state	data	
Ux	users	

1	process	per	service	
Trade	off	between	security	and	performance	

S1	

OKWS	Design	

runs	as	superuser;	bootstrapping;	chroot	directory	is	run	monitors	processes;	relaunches	
them	if	they	crash	
	

14	

okld	 uid=root	
dir=run	

OKWS	Design	

Launch	okd	(demux	daemon)	to	route	traffice	to	appropriate	service	;		
If	request	is	valid,	forwards	the	request	to	the	appropriate	service	
If	request	is	invalid,	send	HTTP	404	error	to	the	remote	client	
If	request	is	broken,	send	HTTP	500	error	to	the	remote	client	

15	

okld	

oklogd	

okd	

External	connections	
(port	80)	

uid=root	
Dir=run	

uid=oklogd	
dir=log	

uid=okd	
dir=run	

OKWS	Design	

oklogd	daemon	to	write	log	entries	to	disk	
chroot	into	their	own	runtime	jail	(within	a	jail,	each	process	has	just	enough	access	privileges	to	
read	shared	libraries	on	startup,	dump	core	files	if	crash)	
Each	service	runs	as	an	unprivileged	user	
	

16	

okld	

oklogd	

okd	

External	connections	
(port	80)	

uid=root	
Dir=run	

uid=oklogd	
dir=log	

uid=okd	
dir=run	

OKWS	Design	

pubd:	provides	minimal	access	to	local	configuration	files,	html	files	
Read	only	access	to	the	files		
	 17	

okld	

oklogd	

okd	

External	connections	
(port	80)	

uid=root	
Dir=run	

uid=oklogd	
dir=log	

uid=okd	
dir=run	pubd	

uid=www	
dir=htdocs	

OKWS	Design	

okld	launch	services;	each	service	in	its	chroot	with	its	own	uid	
Services	owned	by	root	with	permissions	0410	(can	only	be	executed	by	user)	
okld	catches	SIGCHILD	and	restarts	services	if	they	crash	
	

18	

okld	

oklogd	

okd	

External	connections	(port	80)	

svc1	 svc2	 svc3	

uid=root	
Dir=run	

uid=oklogd	
Dir=log	

uid=okd	
dir=run	

Request	2	sockets	
fork()	
if	(child	process){	
				setuid()	
				chroot()	
				exec()	
}	

uid=u3	
dir=run	

uid=u2	
dir=run	

uid=u1	
dir=run	

Logging	
•  Each	service	uses	the	same	logging	file	

–  They	use	the	oklogd	to	write	into	the	file	via	RPCs	
–  oklogd	runs	in	its	own	chroot	jail	

•  Any	compromised	service	will	not	be	able	to	modify	/	read	the	log	
•  A	compromised	service	may	be	able	to	write	arbitrary	messages	to	the	log	(noise)		

19	

Web	Browser	Confinement	
•  Why	run	C/C++	code	in	web	browser	

–  Javascript	highly	restrictive	/	very	slow	
–  Not	suitable	for	high	end	graphics	/	web	games	
–  Would	permit	extensive	client	side	computation	

•  Why	not	to	run	C/C++	code	in	web	browser	
–  Security!		

Difficult	to	trust	C/C++	code		

20	

Web	Browser	Confinement	
•  How	to	allow	an	untrusted	module	to	load	into	a	web-browser?	

–  Trust	the	developer		/	User	decides	
Active	X	

21	

Web	Browser	Confinement	
•  How	to	allow	an	C/C++	in	a	web-browser?	

–  Trust	the	developer		/	User	decides	
Active	X	

–  Fine	grained	confinement		
•  (eg.	NACL	from	Google)	
•  Uses	Software	Fault	Isolation	

22	

Fine	Confinement	within	a	Process	
•  How	to		

–  restrict	a	module	from	jumping	outside	its	module	
–  Restrict	read/modification	of	data	in	another	module	
	
(jumping	outside	a	module	and	access	to	data	
outside	a	module	should	be	done	only	through	
prescribed	interfaces)	
	
(can	use	RPCs,	but	huge	performance	overheads)	

23	

Application	

Fine	Grained	Confinement	
(Software	Fault	Isolation)	

•  process	space	partitioned	into	logical	fault	domains.	
•  Each	fault	domain	contains	data,	code,	and	a	unique	ID	
•  Code	in	one	domain	not	allowed	to	read/modify	data	in	another	domain.		
•  Code	in	one	domain	cannot	jump	to	another	domain.	
•  The	only	way	is	through	a	low	cost	cross-fault-domain	RPC	interface	not	involving	the	OS..	
	
	
	
	

24	

Operating	System	 Logical	Fault	Domains	
(with	a	unique	ID	which	

is	used	for	access	
control)	

Code	

Data	

Wahbe	et	al.	Efficient	Software	Fault	Isolation,	SOSP	93	
https://dl.acm.org/citation.cfm?doid=168619.168635	

Segments	and	Segment	Identifier	

25	

process	virtual		
Address	space	

0	

MAX	

0xabcd0000	

0xabcdFFFF	Segment,		
with		

identifier		
0xabcd	

Note:	A	fault	domain	contains	2	segments	(code;	data+stack+heap)	
	
Virtual	address	space	divided	into	segments	such	that	addresses	in	the	same	
segment	have	the	same	upper	address	bits	(eg	in	the	above	example	the	
segment	identifier	is	0xabcd)	
	
An	untrusted	module’s	object	is	modified	so	that	it	can	jump	only	to	targets	in	
its	code	segment	and	read/write	only	to	addresses	within	its	data	segment.	

Segments	and	Segment	Identifier	

26	

process	virtual		
Address	space	

0	

MAX	

0xabcd0000	

0xabcdFFFF	
Segment,		
with		

identifier		
0xabcd	

Modify	untrusted	object	at	load	time,	
	
All	legal	jumps	will	have	the	same	upper	bits	(same	segment	
identifier)	
	
All	legal	data	addresses	generated	will	also	have	the	same	
upper	bits	(same	segment	identifier)	
	

Safe	Instructions	
•  Compile	time	techniques	/	Load	time	techniques	

–  Scan	the	binary	from	beginning	to	end.	
–  Reliable	disassembly:	by	scanning	the	executable	linear	

•  variable	length	instructions	may	be	issues	

	
•  A	jump	may	land	in	the	middle	of	an	instruction	
•  Two	ways	to	deal	with	this—	

–  Ensure	that	all	instructions	are	at	32	byte	offsets	
–  Ensure	that	all	Jumps	are	to	32	byte	offset	
	

27	

25		CD		80		00		00	
AND	%eax,	0x000080CD				

CD		80		00		00	
INT	$0x80	

AND	eax,	0xffffffe0	
JMP	*eax	

Achieving	Segmentation	
•  Binary	rewriting	statically	

–  At	the	time	of	loading,	parse	through	the	untrusted	module	to	determine	all	memory	
read	and	write	instructions	and	jump	instructions.		

	
–  Use	unique	ID	(upper	bits)	to	determine	if	the	target	address	is	legal	

–  Rewriting	can	be	done	either	at	compile	time	(modifying	compiler)	or	at	load	time.	
(currently	only	compile	time	rewriting	feasible)	

	
–  A	verifier	also	needed	when	the	module	is	loaded	into	the	fault	domain.	
	

28	

Safe	&	Unsafe	Instructions	
Safe	Instructions:		

–  Most	instructions	are	safe	(such	as	ALU	instr)	
–  Many	of	the	target	addresses	can	be	resolved	statically	

(jumps	and	data	addresses	within	the	same	segment	id.	These	are	also	
safe	instructions)	

29	

Safe	Instructions	
•  Compile	time	techniques	/	Load	time	techniques	

–  Scan	the	binary	from	beginning	to	end.	
–  Reliable	disassembly:	by	scanning	the	executable	linearl	

•  variable	length	instructions	may	be	issues	

	
•  A	jump	may	land	in	the	middle	of	an	instruction	
•  Two	ways	to	deal	with	this—	

–  Ensure	that	all	instructions	are	at	32	byte	offsets	
–  Ensure	that	all	Jumps	are	to	32	byte	offset	
	

30	

25		CD		80		00		00	
AND	%eax,	0x000080CD				

CD		80		00		00	
INT	$0x80	

AND	eax,	0xffffffe0	
JMP	*eax	

Unsafe	Instructions	
	

Prohibited	Instructions:	
–  Eg.	int,	syscall,	etc.	

Unsafe	Instructions:	Cannot	be	resolved	statically.		
–  For	example	store	0x100,	[r0]	
–  Unsafe	targets	need	to	be	validated	at	runtime	
–  Jumps	based	on	registers	(eg.	Call	*eax),	and	Load/stores	that	use	

indirect	addressing	are	unsafe.	
Eg.	JMP	*eax	

	
31	

Runtime	Checks	for	Unsafe	Instructions	
(segment	matching)	

32	

Is	instruction	
unsafe?	

Is	address	
legal?	

Yes	

Execute	Instruction	
(either	Jump	or	Memory	access)	

Yes	

Trap	to	a	system	
error	routine	outside	the	

distrusted	code	

Run	Time	Checks	Segment	Matching	

33	

Insert	code	for	every	unsafe	instruction	that	would	trap	if	the	store	
is	made	outside	of	the	segment	
	
4	registers	required	(underlined	registers)	
	
	
	
	
	
	
	
Overheads	increase	due	to	additional	instructions	but	the	increase	is		
not	as	high	as	with	RPCs	across	memory	modules.	

Address	Sandboxing	
•  Segment	matching	is	strong	checking.		

–  Able	to	detect	the	faulting	instruction	(via	the	trap)	
•  Address	Sandboxing	:	Performance	can	be	improved	if	this	

fault	detection	mechanism	is	dropped.	
–  Performance	improved	by	not	making	the	comparison	but	forcing	the	upper	

bits	of	the	target	address	to	be	equal	to	the	segment	ID	
–  Cannot	catch	illegal	addresses	but	prevents	module	from	illegally	accessing	

outside	its	fault	domain.	

34	

Segment	Matching	:	Check	::	Address	Sandboxing	:	Enforce	

Address	Sandboxing	
Requires	5	dedicated	registers	
	
	
	
	
Enforces	that	the	upper	bits	of	the	dedicated-reg	contains	the	
segment	identifier	

35	

Ensure	Valid	Instructions	
•  How	to	ensure	that	jump	targets	are	at	valid	
instruction	locations	
–  Ensure	that	all	instructions	are	at	32	byte	offsets	
–  Ensure	that	all	Jumps	are	to	32	byte	offset	

	

36	

25		CD		80		00		00	
AND	%eax,	0x000080CD				

CD		80		00		00	
INT	$0x80	

AND	eax,	0xffffffe0	
JMP	*eax	

Calls	between	Fault	Domains	
(light	weight	cross-fault-domain-RPC)	

37	

Safe	calls	outside	a	fault	domain	is		
by	jump	tables.	
	
Each	entry	in	jump	table	is	a	control	
transfer	instruction	whose	target	
address	is	a	legal	entry	point	outside	
the	domain.	
	
Maintained	 in	 the	 read	only	 segment	
of	 the	 program	 therefore	 cannot	 be	
modified.	
	
	

Call	stub	

Return	
stub	

fun	

Jump		
table	

Fault	Domain	1	 Fault	Domain	2	

fun()	

Calls	between	Fault	Domains	
(cross-fault-domain-RPC)	

•  A	pair	of	stubs	for	each	pair	of	fault	domains	
•  Stubs	are	trusted	
•  Present	outside	the	fault	domains	
•  Responsible	for		

–  copying	cross-domain	arguments	between		
domains	

–  manages	machine	state	
(store/restore	registers	as	required)	

–  Switch	execution	stack	
–  They	can	directly	copy	call	arguments	to		

the	target	domain	

•  Cheap	
–  No	traps,	no	context	switches	

38	

Call	stub	

Return	
stub	

fun	

Jump		
table	

Fault	Domain	1	 Fault	Domain	2	

fun()	

System	Resources	
•  How	to	ensure	that	one	fault	domain	does	not	alter	system	

resources	used	by	another	fault	domain	
–  For	example,	does	not	close	the	file	opened	by	another	domain	

•  One	way,	
–  Let	the	OS	know	about	the	fault	domains	
–  So,	the	OS	keeps	track	if	such	violations	are	done	at	the	system	level	

•  Another	(more	portable	way),	
–  Modify	the	executable	so	that	all	system	calls	are	made	through	a	well	

defined	interface	called	cross-fault-domain-RPC.	
–  The	cross-fault-domain-RPC	will	make	the	required	checks.	

39	

Shared	Data	(Global	/	Heap	Variables)	
•  Page	tables	in	kernel	modified	so	that	shared	memory	

mapped	to	every	segment	that	needs	access	to	it	

40	

process	virtual		
Address	space	

0	

MAX	

Physical	address	
space	

process	tables	 Shared	
page	

Segmentation	
(Hardware	Support	for	Sandboxing)	

41	

Segmentation	Example	

42	

(linear	address)	

(logical	address)	

Segment Base Limit

0 - -

1 1000 1000

2 4000 500

3 8000 1000

4 9000 1000

1	
segment	register	(eg	%CS)	

0x3000	
pointer	to	descriptor	table	

0x3000			(descriptor	table)	

100	
offset	register	(eg	%eip)	

+	 1100	

Segmentation	In	Sandboxing	
•  Create	segments	for	each	sandbox	
•  Make	segment	registers	(CS,	ES,	DS,	SS)	point	to	these	segments	

•  Need	to	ensure	that	the	untrusted	code	does	not	modify	the	segment	
registers 		

•  Jumping	out	of	a	segment:	need	to	change	segment	registers	
appropriately	

43	

Usage	

44	

When	to	use	it?	
When	you	have	an	application	with		

	multiple	tightly	linked	modules.	
	a	lot	of	shared	data	

	
If	your	application	does	not	have	these	characteristics,	

	then	hardware	based	solutions	are	useful.	
	

Native	Client	
•  Used	in	Google	Chrome	till	May	2017	
•  Uses	SFI	to	run	C/C++	code	in	a	web	browser	(with	support	from	

Segmentation)	
•  A	trusted	environment	for	operations	such	as	allocating	memory,	

threading,	message	passing,	etc	

45	

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/
34913.pdf	
	

Web	Browser	

	
	
	

Trusted		
Runtime	

C/C++	
Native	module	
always	loaded	in		
The	range	0	to	256MB	

Native	Client	Rules	
1.  Binary	not	writable	
2.  Start	at	mem	64K	offset	and	extend	to	a	max	of	256MB	
3.  Indirect	jumps	protected	by	macro	instructions	
4.  Pad	memory	after	code	with	hlt	instructions	until	page	

boundary	
5.  Direct	jumps	are	to	valid	instructions	
6.  No	instructions	that	span	the	32-byte	boundary	
7.  All	instructions	reachable	by	disassembly	from	the	start	

46	

