
More Vulnerabilities
(buffer overreads, format string, integer

overflow, heap overflows)

Chester Rebeiro

Indian Institute of Technology Madras

Buffer	Overreads	

2	

3	

Buffer	Overread	Example	

Buffer	Overread	Example	

4	

len	read	from	command	line	

len	used	to	specify	how	much	
needs	to	be	read.		
Can	lead	to	an	overread	

Buffer	Overreads	
•  Cannot	be	prevented	by	canaries	

	 	canaries	only	look	for	changes	
•  Cannot	be	prevented	by	the	W^X	bit	

	 	we	are	not	executing	any	code	
•  Cannot	be	prevented	by	ASLR	

	 	not	moving	out	of	the	segment	
•  Can	be	prevented	by	compiler	and	hardware	level	changes	

5	

Heartbleed	:	A	buffer	overread	
malware	

6	

•  2012	–	2014	
–  Introduced	in	2012;	disclosed	in	2014	

•  CVE-2014-0160	
•  Target	:	OpenSSL	implementation	of		

TLS	–	transport	layer	security	
–  TLS	defines	crypto-protocols	for	secure	

communication		
–  Used	in	applications	such	as	email,	web-browsing,	

VoIP,	instant	messaging,		
–  Provide	privacy	and	data	integrity	

https://www.theregister.co.uk/2014/04/09/heartbleed_explained/	

Heartbeat	

	

•  A	component	of	TLS	that	provides	a	means	to	keep	alive	secure	
communication	links	
–  This	avoids	closure	of	connections	due	to	some	firewalls	
–  Also	ensures	that	the	peer	is	still	alive	

7	

Hello	World;	12	

Hello	World;	12	

Heartbeat	Message	

type	 length	 payload	 padding	

Heartbeat	

	

•  Client	sends	a	heart	beat	message	with	some	payload	
•  Server	replies	with	the	same	payload	to	signal	that	everything	is	OK	

8	

Hello	World;	12	

Hello	World;	12	

Heartbeat	Message	

type	 length	 payload	 padding	

SSL3	struct	and	Heartbeat	

9	

•  Heartbeat	message	arrives	via	an	SSL3	structure,	which	is	defined	as	
follows	

	length	:	length	of	the	heartbeat	message	
								data		:	pointer	to	the	entire	heartbeat	message	
	

struct ssl3_record_st
{
 unsigned int D_length; /* How many bytes available */
 [...]
 unsigned char *data; /* pointer to the record data */
 [...]
} SSL3_RECORD;

type	 Length	(pl)	 payload	
Heartbeat	Message	

Payload	and	Heartbeat	length	

•  payload_length:	controlled	by	the	heartbeat	message	creator	
–  Can	never	be	larger	than	D_length	
–  However,	this	check	was	never	done!!!		

•  Thus	allowing	the	heartbeat	message	creator	to	place	some	arbitrary	
large	number	in	the	payload_length	

•  Resulting	in	overread	

10	

type	 Length	(pl)	 payload	
Heartbeat	Message	

payload	length	(pl)	

D_length	(pl)	

Overread	Example	

11	

Attacker	sends	a	heartbeat	message	with	
a	single	byte	payload	to	the	server.	
However,	the	pl_length	is	set	to	65535	
(the	max	permissible	pl_length)	

Victim	ignores	the	SSL3	length	(of	4	bytes),		
Looks	only	at	the	pl_length	and	returns		
a	payload	of	65535	bytes.	In	the	payload,	only	
1	byte	is	victim’s	data	remaining	65534	from	
its	own	memory	space.	

Broken	OpenSSL		
code@victim	

12	https://git.openssl.org/gitweb/?p=openssl.git;a=blob;f=ssl/t1_lib.c;h=a2e2475d136f33fa26958fd192b8ace158c4899d#l3969	

p	points	to	the	attackers	heart	
beat	packet	which	the	victim	
just	received.	

get	the	heartbeat	type;	
fill	payload	with	size	of	payload	
(pl	in	our	notation)	
This	is	picked	up	from	the		
attackers	payload	and	contains	
65535	

Allocate	buffer	of	3	+	
65535	+	16	bytes	

memcpy	grossly	
overreads	from	the	
victim’s	heap	

1	

2	

3	

4	

Broken	OpenSSL		
code@victim	

13	

Add	padding	and	send	the	
response	heartbeat	message	
back	to	the	attacker	

5	

65534	byte	return	payload	may	
contain	sensitive	data	

14	

Further,	invocations	of	similar	false	heartbleed	will	result	in	another	64KB	of	the	
heap	to	be	read.	
In	this	way,	the	attacker	can	scrape	through	the	victim’s	heap.	

The	patch	in	OpenSSL	

15	

Discard	the	heartbeat	response	if	it	happens	to	be	greater	than		
the	length	in	the	SSL3	structure	(i.e.	D_length)	

Format	String	Vulnerabilities	

16	https://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf	

Format	Strings	

17	

printf ("The magic number is: %d\n", 1911);

format	string	
Format	specifier	

arguments	

void printf (char **fmt, . . .);

variable	arguments	

Function	declaration	of	printf	

printf	invocation	

18	

void main(){
 printf (“%d %d %d\n", a, b, c);
}

b	

return	Address	

Locals	of	function	

prev	frame	pointer	

stack		

a	
ptr	to	fmt	string	

c	

void printf(char *fmt, ...){
 va_list ap; /* points to each unnamed arg in turn */
 char *p, *sval;
 int ival;
 double dval;
 va_start(ap, fmt); /*make ap point to 1st unnamed arg */
 for (p = fmt; *p; p++) {
 if (*p != '%’) {
 putchar(*p);
 continue;
 }
 switch (*++p) {
 case 'd':
 ival = va_arg(ap, int);
 print_int(ival);
 break;
 | | | | |
 case 's':
 for (sval = va_arg(ap, char *); *sval; sval++)
 putchar(*sval);
 break;
 default:
 putchar(*p);
 break;
 }
 }
 va_end(ap); /* clean up when done */
}

19	

b	

return	Address	

Locals	of	function	

prev	frame	pointer	

stack		

a	
ptr	to	fmt	string	

c	

Insufficient	Arguments	to	printf	

20	

void main(){
 printf (“%d %d %d\n", a, b);
}

b	

return	Address	

Locals	of	function	

prev	frame	pointer	

stack		

a	
ptr	to	fmt	string	

Can	the	compiler	detect	this	inconsistency	
•  Generally	does	not	
•  Would	need	internal	details	of	printf,	making	the	compiler	

library	dependent.	
•  Format	string	may	be	created	at	runtime	

	

3	format	
specifiers	

But	only	2	
arguments	

Can	the	printf	function	detect	this	inconsistency	
•  Not	easy	
•  Just	picks	out	arguments	from	the	stack,	whenever	it	sees	a	format	specifier	

Exploiting	inconsistent	printf	

•  Crashing	a	program	

•  Printing	contents	of	the	stack	

	

21	

printf ("%s%s%s%s%s%s%s%s%s%s%s%s");

printf ("%x %x %x %x");

Exploiting	inconsistent	printf	

•  Printing	any	memory	location	

22	

This	should	have	the	contents	of	s	

user_string	has	to	be	local	

Exploiting	inconsistent	printf	

•  Printing	any	memory	location	

23	

This	should	have	the	contents	of	s	

user_string	has	to	be	local	

contents	of	the	stack	printed	
by	the	6	%x	

string	pointed	to	by	0x080496c0.	
this	happens	to	be	‘s’	

%s,	picks	pointer	
from	the	stack	
and	prints	from	the	
pointer	till	\0	

Digging	deeper	

24	

0x0000001a	
0xbffe72d8	
b776a54	

0	
0xb7fe1b48	
0x08096c0	

%x	
%x	

0x8048566	

%x	
%x	
%x	
%x	
%s	

us
er
_s
tr
in
g	

stack	

esp	

printf(user_string);

•  printf	will	start	to	read	user_string	
•  Whenever	it	finds	a	format	specifier	(%x	here)	

o  It	reads	the	argument	from	the	stack	
o  and	increments	the	va_arg	pointer	

•  If	we	have	sufficient	%x’s,	the	va_arg	pointer		
will	eventually	reach	user_string[0],	which	is	filled	
with	the	desired	target	address.	

•  At	this	point	we	have	a	%s	in	user	string,		
thus	printf	would	print	from	the	target	address	till	\0	

More	Format	Specifiers	

•  Reduce	the	number	of	%x	with	%N$s	

25	

Pick	the	7th	argument	from	the	stack.	

0x0000001a	
0xbffe72d8	
b776a54	

0	
0xb7fe1b48	
0x08096c0	

%7$s	

0x8048566	

us
er
_s
tr
in
g	

stack	

esp	

+7	

Overwrite		
an	arbitrary	location	

%n	format	specifier	:	returns	the	number	of	characters	printed	so	far.	
•  	 ‘i’	is	filled	with	5	here	
	
	
Using	the	same	approach	to	read	data	from	any	location,	printf	can	be	used	
to	modify	a	location	as	well	
	
Can	be	used	to	change	function	pointers	as	well	as	return	addresses	

26	

int i;
printf(“12345%n”, &i);

Overwrite	Arbitrary	Location	
with	some	number	

27	

Overwrite	Arbitrary	Location	with	
Arbitrary	Number	

28	

An	arbitrary	number	

Another	useful	format	specifier	
•  %hn	:	will	use	only	16	bits	..	Can	be	used	to	store	large	

numbers		

29	

address	of	
s	to	store	the	
lower	16bits	

address	of	
s	to	store	the	
higher	16bits	

Store	the	number	
of	characters	printed.	
	
Both	16	bit	lower	and	
16	bit	higher	will	be	
stored	separately	

Integer	Overflow	Vulnerability	

30	http://phrack.org/issues/60/10.html	

What’s	wrong	with	this	code?	

31	

Expected	behavior	

What’s	wrong	with	this	code?	

32	

Defined	as	short.	Can	hold	
a	max	value	of	65535	

If	i	>	65535,	s	overflows,	
therefore	is	truncated.	So,	the	
condition	check	is	likely	to	be	
bypassed.		

Will	result	in	an	overflow	of	buf,		
which	can	be	used	to	perform	
nefarious	activities		

Integer	Overflow	Vulnerability	
•  Due	to	widthness	overflow	
•  Due	to	arithmetic	overflow		
•  Due	to	sign/unsigned	problems	

33	

Widthness	Overflows	
Occurs	when	code	tries	to	store	a	value	in	a	variable	that	is	too	
small	(in	the	number	of	bits)	to	handle	it.	
For	example:	a	cast	from	int	to	short	
	

34	

int a1 = 0x11223344;
char a2;  
short a3;  
 
a2 = (char) a1;
a3 = (short) a1;

a1 = 0x11223344
a2 = 0x44
a3 = 0x3344

Arithmetic	Overflows	

35	

Exploit	1	
(manipulate	space	allocated	by	malloc)	

36	

Space	allocated	by	malloc	
depends	on	len.	If	we	choose	
a	suitable	value	of	len	such	
that	len*sizeof(int)	overflows,	
then,	
	
(1)  myarray	would	be	smaller	

than	expected			
(2)  thus	leading	to	a	heap	

overflow	
(3)  which	can	be	exploited	

(Un)signed	Integers	
•  Sign	interpreted	using	the	most	significant	bit.	
•  This	can	lead	to	unexpected	results	in	comparisons	and	arithmetic		

37	

i	is	initialized	with	the	highest	positive	value	that	a	signed	32	bit	integer	can	take.	
When	incremented,	the	MSB	is	set,	and	the	number	is	interpreted	as	negative.	

Sign	Interpretations	in	compare	

38	

This	test	is	with	signed	numbers.	
Therefore	a	negative	len	will	pass	the	
‘if’	test.	

In	memcpy,	len	is	interpreted	as	unsigned.	
Therefore	a	negative	len	will	be	treated	
as	positive.	
	
This	could	be	used	to	overflow	kbuf.	

void	*memcpy(void	*restrict	dst,	const	void	*restrict	src,	size_t	n);	
From	the	man	pages	

Sign	interpretations	in	arithmetic	

39	

table	+	pos	is	expected	to	be	a	
value	greater	than	table.	
	
If	pos	is	negative,	this	is	not	the	
case.	
	
Causing	val	to	be	written	to	a	
location	beyond	the	table	

This	arithmetic	done	considering	unsigned	

exploiting	overflow	due	to	sign	
in	a	network	deamon	

40	

if	size1	and	size2	are	large	enough,	
size	may	end	up	being	negative.	

size1	and	size2	are	unsigned	
Size	is	signed.	

Size	is	returned,	which	may	
cause	an	out	to	overflow	in	the	
callee	function	

Sign	could	lead	to		
memory	overreads.	

41	

#define MAX_BUF_SIZE 64 * 1024

void store_into_buffer(const void *src, int num)
{
 char global_buffer[MAX_BUF_SIZE];

 if (num > MAX_BUF_SIZE)
 return;

 memcpy(global_buffer, src, num);

 [...]
}

•  num	is	a	signed	int	
	

•  If	num	is	negative,	
then	it	will	pass	the	if	
test	

•  memcpy’s	3rd	
parameter	is	unsigned.	
So,	the	negative	
number	is	interpreted	
as	positive.	Resulting	
in	memory	overreads.	

Stagefright	Bug	

42	

•  Discovered	by	Joshua	Drake	and	disclosed	on	
July	27th,		2015	

•  Stagefright	is	a	software	library	implemented	
in	C++	for	Android	

•  Stagefright	attacks	uses	several	integer	based	
bugs	to	

–  execute	remote	code	in	phone	
–  Achieve	privilige	escalation		

•  Attack	is	based	on	a	well	crafted	MP3,	MP4	
message	sent	to	the	remote	Android	phone	

–  Multiple	vulnerabilities	exploited:	
•  One	exploit	targets	MP4	subtitles	that	uses	tx3g	for	timed	text.	
•  Another	exploit	targets	covr	(cover	art)	box	

•  Could	have	affected	around	one	thousand	
million	devices	

–  Devices	affected	inspite	of	ASLR	

MPEG4	Format	

43	

44	

status_t MPEG4Source::parseChunk(off64_t *offset) {

 [...]

 uint64_t chunk_size = ntohl(hdr[0]);
 uint32_t chunk_type = ntohl(hdr[1]);
 off64_t data_offset = *offset + 8;

 if (chunk_size == 1) {
 if (mDataSource->readAt(*offset + 8, &chunk_size, 8) < 8) {
 return ERROR_IO;
 }
 chunk_size = ntoh64(chunk_size);

 [...]

 switch(chunk_type) {
 [...]

 case FOURCC('t', 'x', '3', 'g'):
 {
 uint32_t type;
 const void *data;
 size_t size = 0;
 if (!mLastTrack->meta->findData(
 kKeyTextFormatData, &type, &data, &size)) {
 size = 0;
 }

 uint8_t *buffer = new (std::nothrow) uint8_t[size + chunk_size];
 if (buffer == NULL) {
 return ERROR_MALFORMED;
 }

 if (size > 0) {
 memcpy(buffer, data, size);
 }

offset	into	file	

int	hdr[2]	is	the	first	two	
words	read	from	offset	

chunksize	of	1	has	a		
special	meaning.	

(1)  chunk_size	is	uint64_t,		
(2)  it	is	read	from	a	file	
(3)  it	is	used	to	allocate	a	

buffer	in	heap.	

All	ingredients	for	an	integer	
overflow	vulnerability	

Buffer	could	be	made	to	
overflow	here.	Resulting	in	a	
heap	based	exploit.	
This	can	be	used	to	control	…	
...	Size	written	
...	What	is	written	
...	Predict	where	objects	are	
allocated	

https://github.com/CyanogenMod/android_frameworks_av/blob/6a054d6b999d252ed87b4224f3aa13e69e3c56e0/media/libstagefright/
MPEG4Extractor.cpp#L1954	

tx3g	exploit	

Integer	Overflows	

On	32	bit	platforms	
	widthness	overflow	
	(chunk_size	+	size)	is	uint64_t	however	new	takes	a	32	bit			

							value		
	
On	64	bit	platforms	

	arithmetic	overflow	
	(chunk_size	+	size)	can	overflow	by	setting	large	values	for				

								chunk_size	

45	

uint64_t chunk_size = ntohl(hdr[0]);

uint8_t *buffer = new (std::nothrow) uint8_t[size + chunk_size];	

Heap	exploits	

46	

Heap	
•  Just	a	pool	of	memory	used	for	dynamic	memory	allocation	

47	

Text	

Data	

Heap	

Stack	

Heap	vs	Stack	

•  Heap	

–  Slow	
– Manually	done	by	free	
and	malloc	

–  Used	for	objects,	large	
arrays,	persistent	data	
(across	function	calls)	

•  Stack	

–  Fast	
–  Automatically	done	by	
compiler	

–  Temporary	data	store	

48	

Heap	Management	
•  Several	different	types	of	implementations	

–  Doug	Lea’s	forms	the	base	for	many	
–  glibc	uses	ptmalloc	
–  Others	include	

	tcmalloc	
	jemalloc			(used	in	Android)	
	nedmalloc	
	Hoard		

49	

http://gee.cs.oswego.edu	
ftp://g.oswego.edu/pub/misc/malloc.c	
ptmalloc	

Doug	Lea’s	Malloc	

50	http://g.oswego.edu/dl/html/malloc.html	

Heap	Memory	split	into	chunks	
of	various	sizes	

size/status=inuse	

data	

size/status=free	

Free	chucks	:	
Two	bordering	unused	chunks	can	be	
coalesced	into	one	larger	chunk		
	
All	free	chunks	can	be	traversed	via	
linked	lists	(double	or	single)	
	
If	correct	sized	chunk	is	unavailable,	a	
larger	chunk	can	be	split	
	
Allocated	chunks:	
To	find	the	next	used	chunk	compute	
size	+	base_address	
All	allocated	chunks	either	border	a	free	
chunk	or	the	top	chunk	
	

top	
chunk	

Heap	Memory		

glib’s	structures	

51	

P	:	previous	chunk	in	use	(PREV_INUSE	bit)	
	
If	P=0,	then	the	word	before	this	contains	
the	size	of	the	previous	chunk.	
	
The	very	first	chunk	always	has	this	bit	set	
Preventing	access	to	non-existent	memory.	
	
M	:	set	if	chunk	was	obtained	with	mmap	
	
A	:	set	if	chunk	belongs	to	thread	arena	

Allocated	chunk	

mem.	Is	the	pointer	returned	by	malloc.	
chunk.	Is	the	pointer	to	metadata	for	
malloc	
	
	
User	data	size	for	malloc(n)	is		
N	=	8	+	(n/8)*8	bytes.	
Total	size	of	chunk	is	N+8	bytes		
	

glib’s	structures	

52	

P	:	previous	chunk	in	use	(PREV_INUSE	bit)	
	
If	P=0,	then	the	word	before	this	contains	
the	size	of	the	previous	chunk.	
	
The	very	first	chunk	always	has	this	bit	set	
Preventing	access	to	non-existent	memory.	
	
M	:	set	if	chunk	was	obtained	with	mmap	
	
A	:	set	if	chunk	belongs	to	thread	arena	

Free	chunk	

mem.	Is	the	pointer	returned	by	malloc.	
chunk.	Is	the	pointer	to	metadata	for	
malloc	
	
	
User	data	size	for	malloc(n)	is		
N	=	8	+	(n/8)*8	bytes.	
Total	size	of	chunk	is	N+8	bytes		
	

Binning	

53	

16	 24	 32.	 …	 512	 576	 640	 ---	 231	

sorted	

First	Fit	scheme	used	for	allocating	chunk	

Glib’s	first	fit	allocator	

54	https://github.com/shellphish/how2heap				(first_fit.c)	

First	Fit	scheme	used	for	allocating	chunk	

Allocating	a	memory	chunk	
of	512	bytes	

Now	freeing	it	

Now	allocating	another	
chunk	<	512	bytes.		
	
The	first	free	chunk	
available	corresponds	to	
the	freed	‘a’.	So,	‘c’	gets	
allocated	the	same	address	
as	‘a’	

Types	of	Bins	

55	

Fast	Bins	 Unsorted	Bins	 Small	Bins	 Large	Bins	 Top	Chunk	
Last	Reminder		
Chunk	

Single	link	list	
8	byte	chunks	
	(16,	24,	32,	….,	128)	
No	coalescing	(could	result	in	fragmentation;	but	speeds	up	free)	
LIFO	

Example	of	Fast	Binning	

56	

x	and	y	end	up	in	the	same	bin.	 x	and	y	end	up	in	different	bins.	

Types	of	Bins	

57	

Fast	Bins	 Unsorted	Bins	 Small	Bins	 Large	Bins	 Top	Chunk	
Last	Reminder		
Chunk	

Single	link	list	
8	byte	chunks	
	(16,	24,	32,	….,	128)	
No	coalescing	(could	result	in	fragmentation;	but	speeds	up	free)	
LIFO	

1	bin	
Doubly	link	list	
Chunks	of	any	size	
Helps	reuse	recently	used	chunks	
	
Uses	the	first	chunk	that	fits.	

Types	of	Bins	

58	

Fast	Bins	 Unsorted	Bins	 Small	Bins	 Large	Bins	 Top	Chunk	
Last	Reminder		
Chunk	

Single	link	list	
8	byte	chunks	
	(16,	24,	32,	….,	128)	
No	coalescing	(could	result	in	fragmentation;	but	speeds	up	free)	
LIFO	

1	bin	
Doubly	link	list	
Chunks	of	any	size	
Helps	reuse	recently	used	chunks	

62	bins	;	less	than	512	bytes	
	
Chunks	of	8	bytes	
	
Circular	doubly	linked	list	–	because	chunks	are	unlinked	from	
the	middle	of	the	list	
	
Coalescing	–	join	to	free	chunks	which	are	adjacent	to	each		
other	
	
FIFO	

Types	of	Bins	

59	

Fast	Bins	 Unsorted	Bins	 Small	Bins	 Large	Bins	 Top	Chunk	
Last	Reminder		
Chunk	

Single	link	list	
8	byte	chunks	
	(16,	24,	32,	….,	128)	
No	coalescing	(could	result	in	fragmentation;	but	speeds	up	free)	
LIFO	

1	bin	
Doubly	link	list	
Chunks	of	any	size	
Helps	reuse	recently	used	chunks	

62	bins	;	less	than	512	bytes	
	
Chunks	of	8	bytes	
	
Circular	doubly	linked	list	–	because	chunks	are	unlinked	from	
the	middle	of	the	list	
	
Coalescing	–	join	to	free	chunks	which	are	adjacent	to	each		
other	
	
FIFO	

63	bins	;		
	
First	32	bins	are	64	bytes	apart	
Next	16	bins	are	512	bytes	apart	
Next	8	bins	are	4096	bytes	apart	
Next	4	bins	are	32768	bytes	apart	
Next	2	bins	are	262144	bytes	apart	
1	bin	of	remaining	size	
	
Each	bin	is	circular	doubly	linked	list	
Since	contents	of	bin	are	not	of	same	size;	they	are	stored	in		
decreasing	order	of	size	
	
Coalescing	–	join	to	free	chunks	which	are	adjacent	to	each		
other	

Types	of	Bins	

60	

Fast	Bins	 Unsorted	Bins	 Small	Bins	 Large	Bins	 Top	Chunk	
Last	Reminder		
Chunk	

Single	link	list	
8	byte	chunks	
	(16,	24,	32,	….,	128)	
No	coalescing	(could	result	in	fragmentation;	but	speeds	up	free)	
LIFO	

1	bin	
Doubly	link	list	
Chunks	of	any	size	
Helps	reuse	recently	used	chunks	

62	bins	;	less	than	512	bytes	
	
Chunks	of	8	bytes	
	
Circular	doubly	linked	list	–	because	chunks	are	unlinked	from	
the	middle	of	the	list	
	
Coalescing	–	join	to	free	chunks	which	are	adjacent	to	each		
other	
	
FIFO	

63	bins	;		
	
First	32	bins	are	64	bytes	apart	
Next	16	bins	are	512	bytes	apart	
Next	8	bins	are	4096	bytes	apart	
Next	4	bins	are	32768	bytes	apart	
Next	2	bins	are	262144	bytes	apart	
1	bin	of	remaining	size	
	
Each	bin	is	circular	doubly	linked	list	
Since	contents	of	bin	are	not	of	same	size;	they	are	stored	in		
decreasing	order	of	size	
	
Coalescing	–	join	to	free	chunks	which	are	adjacent	to	each		
other	

Top	of	the	arena;	
Does	not	belong	to	any	bin;	
Used	to	service	requests	when	there	is	no	free		
chunk	available.	
	
If	the	top	chunk	is	larger	than	the	requested	memory	
it	is	split	into	two:	user	chunk	(used	for	the	requeste	
memory	and	last	reminder	chunk	which	becomes	
the	new	top	chunk)	
	
If	the	top	chunk	is	smaller	than	the	requested	chunk	
It	grows	by	invoking	the	brk()	or	sbrk()	system	call	

Which	defines	the	end	of	the	process’	data	segment	
	

free(ptr)	
1.  If	the	next	chunk	is	allocated	then	

–  Set	size	to	zero	
–  Set	p	bit	to	0	

	

61	

00000000	

ptr	

prev_chunk	

ptr_chunk	

next_chunk	
p	

0	

free(ptr)	
2.			If	the	previous	chunk	is	free	then	

–  Coalesce	the	two	to	create	a	new	free	chunk	
–  This	will	also	require	unlinking	from		

the	current	bin	and	placing	the	larger	
chunk	in	the	appropriate	bin	

	
	
Similar	is	done	if	the	next	chuck	is	free	as	well.	

	

62	

00000000	

prev_chunk	

next_chunk	
p	 is	0	

Unlinking	from	a	free	list	

63	

void unlink(malloc_chunk *P, malloc_chunk *BK, malloc_chunk *FD){
FD = P->fd;
BK = P->bk;
FD->bk = BK;
BK->fd = FD;

}

More	recent	Unlinking	

64	

/* Take a chunk off a bin list */
void unlink(malloc_chunk *P, malloc_chunk *BK, malloc_chunk *FD)
{

FD = P->fd;
BK = P->bk;
if (__builtin_expect (FD->bk != P || BK->fd != P, 0))

malloc_printerr(check_action,"corrupted double-linked list",P);
else {

FD->bk = BK;
BK->fd = FD;

}
}

Detects	cases	such	as	these	

FD	pointer	
BK	pointer	

void main()
{

char *a = malloc(10);
free(a);
free(a);

}

Causing	programs	like	this	to	
crash	

Some	double	frees	are	detected	

65	

/* Take a chunk off a bin list */
void unlink(malloc_chunk *P, malloc_chunk *BK, malloc_chunk *FD)
{

FD = P->fd;
BK = P->bk;
if (__builtin_expect (FD->bk != P || BK->fd != P, 0))

malloc_printerr(check_action,"corrupted double-linked list",P);
else {

FD->bk = BK;
BK->fd = FD;

}
}

Detects	cases	such	as	these	

FD	pointer	
BK	pointer	

FD	pointer	
BK	pointer	

void main()
{

char *a = malloc(10);
free(a);
free(a);

}

Causing	programs	like	this	to	
crash	

Most	double	frees	are	not	detected	

66	

void main()
{

char *a = malloc(10);
char *b = malloc(10);
free(a);
free(b);
free(a);
printf(“The end!\n”);

}

FD	pointer	
BK	pointer	

FD	pointer	
BK	pointer	

a	 b	

After	the	second	free	

Most	double	frees	are	not	detected	

67	

void main()
{

char *a = malloc(10);
char *b = malloc(10);
free(a);
free(b);
free(a);
printf(“The end!\n”);

}

FD	pointer	
BK	pointer	

FD	pointer	
BK	pointer	

a	 b	

After	the	third	free	

FD	pointer	
BK	pointer	

a	

Another	malloc	

68	

void main()
{

char *a = malloc(10);
char *b = malloc(10);
char *c;
free(a);
free(b);
free(a);
c = malloc(10);

}

Another	malloc	
c	gets	allocated	the	same	address	as	a		

FD	pointer	(a)	
BK	pointer	(a)	

FD	pointer	(b)	
BK	pointer	(b)	

b	 a	

Two	views	of	the	same	chunk	

69	

prev	chunk	
size	

data	

prev	chunk	
size	

unused	
space	

size	

FD	ptr	
BK	ptr	

Allocated	chunk	 Free	chunk	

c	 a	

*c = 0xdeadbeef;
*(c+4) = 0xdeadbeef;

you	can	control	the	FD	ptr	and	BK	ptr	contents	using	c	

Exploiting	

70	

char payload[] =
“\x33\x56\x78\x12\xac\xb4\x67”;

Void fun1(){}

void main()
{

char *a = malloc(10);
char *b = malloc(10);
char *c;

fun1();
free(a);
free(b);
free(a);
c = malloc(10);
*(c + 0) = GOT entry – 12 for fun1;
*(c + 4) = payload;
some malloc(10);
fun1();

}

Need	to	lookout	for	programs	that	
have	(something)	like	this	structure	
	
We	hope	to	execute	payload	instead	of	
the	2nd	invocation	of	fun1();	

Exploiting	

71	

char payload[] =
“\x33\x56\x78\x12\xac\xb4\x67”;

Void fun1(){}

void main()
{

char *a = malloc(10);
char *b = malloc(10);
char *c;

fun1();
free(a);
free(b);
free(a);
c = malloc(10);
*(c + 0) = GOT entry for fun1;
*(c + 4) = payload;
some malloc(10);
fun1();

}

FD	pointer	(b)	
BK	pointer	(a)	

FD	pointer	(a)	
BK	pointer	(a)	

a	 b	

FD	pointer	
BK	pointer	

a	

Exploiting	

72	

char payload[] =
“\x33\x56\x78\x12\xac\xb4\x67”;

Void fun1(){}

void main()
{

char *a = malloc(10);
char *b = malloc(10);
char *c;

fun1();
free(a);
free(b);
free(a);
c = malloc(10);
*(c + 0) = GOT entry for fun1;
*(c + 4) = payload;
some malloc(10);
fun1();

} FD	ptr	(b)	
BK	pointer	(b)	

FD	pointer	(a)	
BK	pointer	(a)	

a	alias	c	 b	

Exploiting	

73	

char payload[] =
“\x33\x56\x78\x12\xac\xb4\x67”;

Void fun1(){}

void main()
{

char *a = malloc(10);
char *b = malloc(10);
char *c;

fun1();
free(a);
free(b);
free(a);
c = malloc(10);
*(c + 0) = GOT entry for fun1 - 12;
*(c + 4) = payload;
some malloc(10);
fun1();

} GOT	entry	
	ptr	payload	

FD	pointer	(a)	
BK	pointer	(a)	

a	alias	c	 b	

Exploiting	

74	

char payload[] =
“\x33\x56\x78\x12\xac\xb4\x67”;

Void fun1(){}

void main()
{

char *a = malloc(10);
char *b = malloc(10);
char *c;

fun1();
free(a);
free(b);
free(a);
c = malloc(10);
*(c + 0) = GOT entry for fun1 - 12;
*(c + 4) = payload;
some malloc(10);
fun1();

} GOT	entry	-	12	
ptr	payload	

FD	pointer	(a)	
BK	pointer	(a)	

a	alias	c	
alias	FD	
alias	BK	

b	

unlink(P){
FD = P->fd;
BK = P->bk;
FD->bk = BK;
BK->fd = FD;

}	

Exploiting	Heap	

75	

char payload[] =
“\x33\x56\x78\x12\xac\xb4\x67”;

Void fun1(){}

void main()
{

char *a = malloc(10);
char *b = malloc(10);
char *c;

fun1();
free(a);
free(b);
free(a);
c = malloc(10);
*(c + 0) = GOT entry for fun1 - 12;
*(c + 4) = payload;
some malloc(10);
fun1();

}
Payload	executes	

Other	heap	based	attacks	

•  Heap	overflows	
•  Heap	spray	
•  Use	after	free	
•  Metadeta	exploits	

76	

