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Parts	of	Malware	

•  Two	parts	
Subvert	execution:	

	change	the	normal	execution	behavior	of	the	
	program	

	
Payload:	

	the	code	which	the	attacker	wants	to	execute	
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Subvert	Execution	
•  In	application	software	

–  SQL	Injection	
	

•  In	system	software 		
–  Buffers	overflows	and	overreads	
–  Heap:	double	free,	use	after	free	
–  Integer	overflows	
–  Format	string	
–  Control	Flow	
	

•  In	peripherials	
–  USB	drives;	Printers	
	

•  In	Hardware	
–  Hardware	Trojans	

•  Covert	Channels	
–  Can	exist	in	hardware	or	software	
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These	do	not	really	subvert	execution,	
but	can	lead	to	confidentiality	attacks.	



Buffer Overflows in the Stack 
•  We need to first know how a stack is managed 

http://insecure.org/stf/smashstack.html	 4	



Stack in a Program 
(when function is executing) 

EBP 

Parameters		
for	function	

	
return	Address	

Locals	of	function	

prev	frame	pointer	

push $3 
push $2 
push $1 

Stack		

call function 

push %ebp 
movl %esp, %ebp 
sub $20, %esp 

%ebp: Frame Pointer 

In main In function

ESP 
ESP 

ESP 
ESP 

ESP 

ESP 

%esp : Stack Pointer 
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Stack Usage (example) 
Stack (top to bottom): 

address stored data 

1000 to 997 3 

996 to 993 2 

992 to 989 1 

988 to 985 return address 

984 to 981 %ebp (stored 
frame pointer) 

(%ebp)980 to 976 buffer1 

975 to 966 buffer2 

(%sp) 964 stack pointer 

Parameters		
for	function	

	
Return	Address	

Locals	of	function	

prev	frame	pointer	frame pointer 
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Stack Usage Contd. 
Stack (top to bottom): 

address stored data 

1000 to 997 3 

996 to 993 2 

992 to 989 1 

988 to 985 return address 

984 to 981 %ebp (stored 
frame pointer) 

(%ebp)980 to 976 buffer1 

975 to 966 buffer2 

(%sp) 964 

What	is	the	output	of	the	following?	
•  printf(“%x”,	buffer2)		:	966	
•  printf(“%x”,	&buffer2[10])		
						976	à	buffer1	
Therefore	buffer2[10]	=	buffer1[0]	
				A	BUFFER	OVERFLOW	
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Modifying the Return Address 
buffer2[19] =  
    &arbitrary memory location 
 
This causes execution of an 

arbitrary memory location 
instead of the standard return 

Stack (top to bottom): 

address stored data 

1000 to 997 3 

996 to 993 2 

992 to 989 1 

988 to 985 

984 to 981 %ebp (stored 
frame pointer) 

(%ebp)980 to 976 buffer1 

976 to 966 buffer2 

(%sp) 964 

Return	Address	

19 

Arbitrary	Location	
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Now that we seen how buffer 
overflows can skip an instruction, 

 
We will see how an attacker can use 

it to execute his own code (exploit 
code) 

Stack (top to bottom): 

address stored data 

1000 to 997 3 

996 to 993 2 

992 to 989 1 

988 to 985 ATTACKER’S 
code pointer 

984 to 981 %ebp (stored 
frame pointer) 

(%ebp)980 to 976 buffer1 

976 to 966 buffer2 

(%sp) 964 
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Big Picture of the exploit 

Fill the stack as follows  
(where BA is buffer address) 
 

stack pointer 

Parameters		
for	function	

	
Return	Address	

buffer	

prev	frame	pointer	frame pointer 

Exploit	code	

BA	

BA  
buffer Address 

BA	

BA	

BA	

BA	

BA	

BA	

BA	
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Payload 
•  Lets say the attacker wants to spawn a shell 
•  ie. do as follows: 

•  How does he put this code onto the stack? 
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Step 1 : Get machine codes 

•  objdump	–disassemble-all	shellcode.o	
•  Get	machine	code	:	“eb	1e	5e	89	76	08	c6	

46	07	00	c7	46	0c	00	00	00	00	b8	0b	00	00	
00	89	f3	8d	4e	08	8d	56	0c	cd	80	cd	80”	

•  If	there	are	00s	replace	it	with	other	
instructions	
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Step 2: Find Buffer overflow in an 
application 

O 
O 
O 
O 
o 

Defined on stack 

13	



Step 3 : 
Put Machine Code in Large String 

shellcode	

large_string 
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Step 3 (contd) :  
Fill up Large String with BA 

shellcode	 BA	 BA	 BA	 BA	 BA	 BA	 BA	 BA	

large_string 

Address of buffer is BA 
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Final state of Stack 
•  Copy large string into buffer 

•  When strcpy returns the 
exploit code would be executed 

shellcode	 BA	 BA	 BA	 BA	 BA	 BA	 BA	 BA	

large_string 

shellcode	

BA	

BA  
buffer Address 

BA	

BA	

BA	

BA	

BA	

BA	

BA	

buffer 

BA	
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Putting it all together 

bash$ gcc overflow1.c 
bash$ ./a.out 
$sh 
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Buffer overflow in the Wild 
•  Worm CODERED … released on 13th July 2001 
•  Infected 3,59,000 computers by 19th July. 

18	



CODERED Worm 

•  Targeted a bug in Microsoft’s IIS web 
server 

•  CODERED’s string 
 

GET	/default.ida?NNNNNNNNNNNNNNNNNNNNNNNNN	
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	
NNNNNNNNNNNNNNNNNNN%u9090%u6858%ucbd3%u7801%u9090
%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090%u909
0%u8190%u00c3%u0003%u8b00%u531b%u53ff%u0078%u0000%u00
=a	HTTP/1.0		
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Defenses 
•  Eliminate program flaws that could lead to subverting of execution 

 Safer programming languages; Safer libraries; hardware enhancements;  
 static analysis  

•  If can’t eliminate, make it more difficult for malware to subvert 
execution 
 W^X , ASLR, canaries 

•  If malware still manages to execute, try to detect its execution at 
runtime 
 malware run-time detection techniques using learning techniques, ANN and malware signatures 

•  If can’t detect at runtime, try to restrict what the malware can do.. 
–  Sandbox system 

so that malware affects only part of the system; access control; virtualization; trustzone; SGX 
–  Track information flow 
      DIFT; ensure malware does not steal sensitive information   
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Preventing	Buffer	Overflows	
with	Canaries	and	W^X	
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Canaries 
Stack (top to bottom): 

stored data 

3 

2 

1 

ret addr 

sfp (%ebp) 

Insert canary here 

buffer1 

buffer2 

Insert a canary here 

check if the canary value 
has got modified 

•  Known	(pseudo	random)	values	placed	
on	stack	to	monitor	buffer	overflows.	

•  A	change	in	the	value	of	the	canary	
indicates	a	buffer	overflow.	

•  Will	cause	a	‘stack	smashing’	to	be	
detected	
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Canaries	and	gcc	
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•  As	on	gcc	4.4.5,	canaries	are	not	added	to	functions	by	default	
o  Could	cause	overheads	as	they	are	executed	for	every	function	

that	gets	executed	
•  Canaries	can	be	added	into	the	code	by	–fstack-protector	option	

o  If	-fstack-protector	is	specified,	canaries	will	get	added	based	on	
a	gcc	heuristic	
•  For	example,	buffer	of	size	at-least	8	bytes	is	allocated	
•  Use	of	string	operations	such	as	strcpy,	scanf,	etc.	
		

o  Canaries	can	be	evaded	quite	easily	by	not	altering	the	contents	of	
the	canary	



Canaries	Example	
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Without	canaries,	the	return	address	on	stack	gets	overwritten	resulting	in	a	
segmentation	fault.	With	canaries,	the	program	gets	aborted	due	to	stack	smashing.	



Canaries	Example	
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Without	canaries,	the	return	address	on	stack	gets	overwritten	resulting	in	a	
segmentation	fault.	With	canaries,	the	program	gets	aborted	due	to	stack	smashing.	



Canary	Internals	
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Store	canary	onto	stack	

Verify	if	the	canary	has	
changed	

Without	canaries	

With	canaries	

gs	is	a	segment	that	shows	thread	local	data;	in	this	case	it	is	used	
for	picking	out	canaries	



Non Executable Stacks (W^X) 

•  In Intel/AMD processors, ND/NX bit present to mark non code 
regions as non-executable. 
–  Exception raised when code in a page marked W^X executes  

•  Works for most programs 
–  Supported by Linux kernel from 2004 
–  Supported by Windows XP service pack 1 and Windows Server 2003 

•  Called DEP – Data Execution Prevention 

•  Does not work for some programs that NEED to execute from the 
stack.  
–  Eg. JIT Compiler, constructs assembly code from external data and then 

executes it. 
(Need to disable the W^X bit, to get this to work) 
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Will non executable 
stack prevent buffer 
overflow attacks ? 

 
 

Return – to – LibC Attacks 
 

(Bypassing non-executable stack 
during exploitation using return-

to-libc attacks) 
 

28 https://css.csail.mit.edu/6.858/2010/readings/return-to-libc.pdf	 28	



Return to Libc 
(big picture) 

Exploit	code	

BA	

BA	

BA	

BA	

BA	

BA	

BA	

BA	

buffer 

This will not work if ND bit is set 
Return	Address	
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Return to Libc 
(replace return address to point to a function within libc) 

F1	Addr	

F1	Addr	

F1	Addr	

F1	Addr	

F1	Addr	

F1	Addr	

F1	Addr	

F1	Addr	

buffer 

Return	Address	

30 

F1	Addr	

Stack	
	
	
	

Heap	

Data	

Text	

Bypasses	W^X	since	F1	is	in	the	code	segment,	
And	can	be	legally	executed.	
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F1 = system() 
•  One option is function system present in libc 
      system(“/bin/bash”); 
      would create a bash shell 
 

 (there could be other options as well) 
 
So we need to  
1.  Find the address of system in the program 

(does not have to be a user specified function, could be a function 
present in one of the linked libraries) 

2.  Supply an address that points to the string  
 /bin/sh 
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The return-to-libc attack 

F1ptr	

F1ptr	

F1ptr	

F1ptr	

F1ptr	

Shell	ptr	

F1	ptr	

F1ptr	

buffer 
F1ptr	

Return	Address	

system()	
In	libc	

/bin/bash	
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Find address of system in the 
executable 
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Find address of /bin/sh 

•  Every process stores the enviroment variables at 
the bottom of the stack 

•  We need to find this and extract the string /bin/sh 
from it 
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Finding	the	address	of	the	string		
/bin/sh	
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The	final	Exploit	Stack	

xxx	

xxx	

xxx	

0x28085260	

dead	

0xbfbffe25	

xxx	

xxx	

buffer 
xxx	

Return	Address	

system()	
In	libc	

/bin/sh	
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A	clean	exit	

xxx	

xxx	

xxx	

0x28085260	

0x281130d0	

0xbfbffe25	

xxx	

xxx	

buffer 
xxx	

Return	Address	

system()	
In	libc	

/bin/bash	

exit()	
In	libc	
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Limitation of ret2libc 

Limitation	on	what	the	attacker	can	do	
(only	restricted	to	certain	functions	in	the	library)	
	
These	functions	could	be	removed	from	the	library	
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Return	Oriented	Programming	
(ROP)	
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Return Oriented Programming Attacks 

•  Discovered by Hovav Shacham of Stanford University 
•  Subverts execution to libc  

–  As with the regular ret-2-libc, can be used with non executable stacks since the 
instructions can be legally execute 

–  Unlike ret-2-libc does not require to execute functions in libc (can execute any 
arbitrary code) 
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The	Geometry	of	Innocent	Flesh	on	the	Bone:	Return-into-libc	without	Function	Calls	
(on	the	x86	



Target Payload 
Lets say this is the payload needed to be executed by an attacker. 
 
 
 
 
 
Suppose there is a function in libc, which has exactly this sequence of 

instructions … then we are done.. we just need to subvert execution 
to the function 

 
What if such a function does not exist? 

If you can’t find it then build it 
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Step 1: Find Gadgets 
•  Find gadgets 
•  A gadget is a short sequence of instructions followed by a return 

•  Useful instructions : should not transfer control outside the gadget 

•  This is a pre-processing step by statically analyzing the libc library 

useful instruction(s) 
ret 
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Step 2: Stitching 

•  Stitch gadgets so that the payload is built 

Program Binary 

movl	%esi,	0x8(%esi)	
ret	 G1 

movb	$0x0,	0x7(%esi)	
ret	 G2 

movb	$0x0,	0xc(%esi)	
ret	 G3 

movl	$0xb,	%eax	
ret	

G4 
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Ret	instruction	has	2	steps:	
•  Pops	the	contents	pointed	to	by	ESP	into	EIP	
•  Increment	ESP	by	4	(32bit	machine)	



Step	3:	Construct	the	Stack	
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xxx	

xxx	

xxx	

AG1	

AG2	

AG3	

AG4	

xxx	

buffer 
xxx	

Return	Address	

Program Binary 

movl	%esi,	0x8(%esi)	
ret	 G1 

movb	$0x0,	0x7(%esi)	
ret	 G2 

movb	$0x0,	0xc(%esi)	
ret	 G3 

movl	$0xb,	%eax	
ret	

G4 

Program Stack 
AGi:	Address	of	Gadget	i	



Finding	Gadgets	
•  Static	analysis	of	libc	
•  To	find		

1.  A	set	of	instructions	that	end	in	a	ret	(0xc3)	
		The	instructions	can	be	intended	(put	in	by	the	compiler)	or	unintended	

2.  Besides	ret,	none	of	the	instructions	transfer	control	out	of	the	
gadget	
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Intended	vs	Unintended	Instructions	

•  Intended	:	machine	code	intentionally	put	in	by	the	compiler	
•  Unintended	:	interpret	machine	code	differently	in	order	to	build	new	

instructions	
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F7		C7		07	00	00	00	0F	95	45		C3		Machine	Code	:	

What the compiler intended..

What was   not ntended

Highly	likely	to	find	many	diverse	instructions	of	this	form	in	x86;	not	so	likely	to	
have	such	diverse	instructions	in	RISC	processors	



Geometry	
•  Given	an	arbitrary	string	of	machine	code,	what	is	the	

probability	that	the	code	can	be	interpreted	as	useful	
instructions.	
–  x86	code	is	highly	dense	
–  RISC	processors	like	(SPARC,	ARM,	etc.)	have	low	geometry	

•  Thus	finding	gadgets	in	x86	code	is	considerably	more	easier	
than	that	of	ARM	or	SPARC	

•  Fixed	length	instruction	set	reduces	geometry	
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Finding	Gadgets	
•  Static	analysis	of	libc	
•  Find	any	memory	location	with	0xc3	(RETurn	instruction)	
•  Build	a	trie	data	structure	with	0xc3	as	a	root	
•  Every	path	(starting	from	any	node,	not	just	the	leaf)	to	the	root	is	a	

possible	gadget	
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C3	

00	

24	

37	

24	

46	

43	

16	

89	

94	

child	of	



Finding	Gadgets	

•  Scan	libc	from	the	beginning	toward	the	end	
•  If	0xc3	is	found	

–  Start	scanning	backward	
–  With	each	byte,	ask	the	question	if	the	subsequence	forms	a	valid	

instruction	
–  If	yes,	add	as	child	
–  If	no,	go	backwards	until	we	reach	the	maximum	instruction	length	(20	

bytes)	
–  Repeat	this	till	(a	predefined)	length	W,	which	is	the	max	instructions	in	

the	gadget	
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33	 b2	 23	 12	 a0	 31	 a5	 67	 22	 ab	 ba	 4a	 3c	 c3	 ff	 ee	 ab	 31	 11	 09	



Finding	Gadgets	Algorithm	
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Finding	Gadgets	Algorithm	
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is	this	sequence	of	instructions	valid	x86	instruction?	

Boring:	not	interesting	to	look	further;	
Eg.	pop	%ebp;	ret;;;;	leave;	ret	(these	are	boring	if	we	want	to	ignore	intended	instructions)	
Jump	out	of	the	gadget	instructions	

Found	15,121	nodes	in	
~1MB	of	libc	binary	



More	about	Gadgets	
•  Example	Gadgets	

–  Loading	a	constant	into	a	register	(edx	ß	deadbeef)	
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deadbeef	
GadgetAdd	

stack	

pop	%edx	
ret	

esp	

•  A	previous	return	will	pop	the	gadget	address	int	%eip	
•  %esp	will	also	be	incremented	to	point	to	deadbeef	

	(4	bytes	on	32	bit	platform)	
•  The	pop	%edx	will	pop	deadbeef	onto	the	stack	and	increment	

%esp	to	point	to	the	next	4	bytes	on	the	stack	



Stitch	
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pop	%edx	
ret	

G1	

mov	64(%edx),	%eax		
ret	

G2	
G2	
addr	
G1	

stack	

esp	

deadbeef	

+64	

Load	arbitrary	data	into	eax	register	using	
Gadgets	G1	and	G2	



Store	Gadget	
•  Store	the	contents	of	a	register	to	a	memory	location	in	the	

stack	
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GadgetAddr	2	

0	
GadgetAddr	1	

stack	

pop	%edx	
ret	

esp	

mov	%eax,	24(%edx)	
ret	

24	



Gadget	for	addition	
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addl	(%edx),	%eax	
push	%edi	
ret	

Add	the	memory	pointed	
to	by	%edx	to	%eax.		
The	result	is	stored	in	%eax	

pushes	%edi..	onto	the	stack	
why	is	this	present?	
….	This	is	unnecessary,	but	
this	is	best	gadget	that	we	can	
find	for	addition	
But	can	create	problems!!	
	
We	need	work	arounds!	

GadgetAddr2	

GadgetAddr	

stack	

esp	
Modified	



Gadget	for	addition	
(put	0xc3	into	%edi)	
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addl	(%edx),	%eax	
push	%edi	
ret	

1.  First	put	gadget	ptr	for	0xC3	into		
%edi	

2.  0xC3	corresponds	to	NOP	in	
ROP	

3.  Push	%edi	in	gadget	2	just	pushes	
0xc3	back	into	the	stack	
Therefore	not	disturbing	the	stack	
contents	

4.  Gadget	3	executes	as	planned	

GadgetAddr3	

Gadget_RET	

GadgetAddr2	

Gadget_RET	

GadgetAddr1	

stack	

esp	 0xc3	

0xc3	is	ret	;	in	ROP	ret	is	equivalent	to	NOP	v		

pop	%edi	
ret	



Unconditional	Branch	
in	ROP	

•  Changing	the	%esp	causes	unconditional	
jumps	
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GA	

stack	

esp	

pop	%esp	
ret	



Conditional	Branches	
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In	x86	instructions	conditional	branches	have	2	parts	
	
1.  An	instruction	which	modifies	a	condition	flag	(eg	CF,	OF,	ZF)	

		eg.	CMP	%eax,	%ebx								(will	set	ZF	if	%eax	=	%ebx)	
2.		A	branch	instruction	(eg.	JZ,	JCC,	JNZ,	etc)	
						 	which	internally	checks	the	conditional	flag	and	
							 	changes	the	EIP	accordingly	

In	ROP	conditional	branches	have	3	parts	
	
1.  An	ROP	which	modifies	a	condition	flag	(eg	CF,	OF,	ZF)	

		eg.	CMP	%eax,	%ebx								(will	set	ZF	if	%eax	=	%ebx)	
2.		Transfer	flags	to	a	register	or	memory	
3.		Perturb	%esp	based	on	flags	stored	in	memory	

In	ROP,	we	need	flags	to	modify	%esp	register	instead	of	EIP		
Needs	to	be	explicitly	handled	



Step	1	:	Set	the	flags	
Find	suitable	ROPs	that	set	appropriate	flags	
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CMP	%eax,	%ebx	
RET	

subtraction	
Affects	flags	CF,	OF,	SF,	ZF,	AF,	PF	

NEG	%eax	
RET	

2s	complement	negation	
Affects	flags	CF	

	
	

	
	



Step	2:	Transfer	flags	to		
memory	or	register	

•  Using	lahf	instruction	
								stores	5	flags	(ZF,	SF,	AF,	PF,	CF)	in	the	%ah	register	
	

•  Using	pushf	instruction	
	 	pushes	the	eflags	into	the	stack	
	 		

ROPs	for	these	two	not	easily	found.		
A	third	way	–	perform	an	operation	whose	result	depends	on	the	flag	
contents.	

60	

where	would	one	
use	this	
instruction?	



Step	2:	Indirect	way	to	transfer	flags	to	
memory	

Several	instructions	operate	using	the	contents	of	the	flags	
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ADC	%eax,	%ebx							:						add	with	carry;	performs	eax	<-	eax	+	ebx	+	CF	
	
(if	eax	and	ebx	are	0	initially,	then	the	result	will	be	either	1	or	0	depending	on	the	CF)	

RCL		:						rotate	left	with	carry;	
	
	
RCL	%eax,	1	
(if	eax	=	0.	then	the	result	is	either	0	or	1	depending	on	CF)	



Gadget	to	transfer	flags	to	memory	
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%edx	will	have	value	A	
%ecx	will	contain	0x0	

A	



Step	3:	Perturb	%esp	depending		
on	flag	
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If	(CF	is	set){	
					perturb	%esp	
}else{	
					leave	%esp	as	it	is	
}	

What	we	hope	to	achieve	

CF	stored	in	a	memory	location	(say	X)	
Current	%esp	
delta,	how	much	to	perturb	%esp	

What	we	have	
negate	X	
offset	=	delta	&	X	
%esp	=	%esp	+	offset	

One	way	of	achieving	…	

1.  Negate	X	(eg.	Using	instruction	negl)	
					finds	the	2’s	complement	of	X	
					if	(X	=	1)	2’s	complement	is	111111111…	

												if	(X	=	0)	2’s	complement	is	000000000...	
2.	offset	=	delta	if	X	=	1	
				offset	=	0								if	X	=	0	
3.	%esp	=	%esp	+	offset					if	X	=	1	
					%esp	=	%esp																			if	X	=	0	



Turing	Complete	
•  Gadgets	can	do	much	more…	

	 	invoke	libc	functions,		
	 	invoke	system	calls,	...	

•  For	x86,	gadgets	are	said	to	be	turning	complete	
–  Can	program	just	about	anything	with	gadgets	

•  For	RISC	processors,	more	difficult	to	find	gadgets	
–  Instructions	are	fixed	width	
–  Therefore	can’t	find	unintentional	instructions	

•  Tools	available	to	find	gadgets	automatically	
Eg.	ROPGadget	(https://github.com/JonathanSalwan/ROPgadget)	
									Ropper	(https://github.com/sashs/Ropper)	
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Address	Space	Layout	Randomization	
(ASLR)	

65	



The	Attacker’s	Plan	
•  Find	the	bug	in	the	source	code	(for	eg.	Kernel)	that	can	be	

exploited	
–  Eyeballing	
–  Noticing	something	in	the	patches	
–  Following	CVE	

•  Use	that	bug	to	insert	malicious	code	to	perform	something	
nefarious	
–  Such	as	getting	root	privileges	in	the	kernel	

Attacker	depends	upon	knowning	where	these	functions	reside	in	
memory.	Assumes	that	many	systems	use	the	same	address	mapping.	
Therefore	one	exploit	may	spread	easily	
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Address Space Randomization 
•  Address space layout 

randomization (ASLR) 
randomizes the address space 
layout of the process  

•  Each execution would have a 
different memory map, thus 
making it difficult for the attacker 
to run exploits 

•  Initiated by Linux PaX project in 
2001 

•  Now a default in many operating 
systems 
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Memory	layout	across	boots	for	a	Windows	box	



ASLR	in	the	Linux	Kernel	
•  Locations	of	the	base,	libraries,	heap,	and	stack	can	be	randomized	in	a	

process’	address	space	
	
•  Built	into	the	Linux	kernel	and	controlled	by	

/proc/sys/kernel/randomize_va_space	
	
•  randomize_va_space	can	take	3	values	

0	:	disable	ASLR	
1	:	positions	of	stack,	VDSO,	shared	memory	regions	are	randomized	
						the	data	segment	is	immediately	after	the	executable	code	

						2	:	(default	setting)		setting	1	as	well	as	the	data	segment	location	is				
											randomized	
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ASLR	in	Action	
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First	Run	

Another	Run	



ASLR	in	the	Linux	Kernel	

•  Permanent	changes	can	be	made	by	editing	the	/etc/sysctl.conf	file	
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/etc/sysctl.conf,	for	example:	
kernel.randomize_va_space	=	value	
sysctl	-p	



Internals	:	Making	code	relocatable	
•  Load	time	relocatable	

– where	the	loader	modifies	a	program	executable	so	
that	all	addresses	are	adjusted	properly		

–  Relocatable	code		
•  Slow	load	time	since	executable	code	needs	to	be	modified.	
•  Requires	a	writeable	code	segment,	which	could	pose	
problems	

•  PIE	:	position	independent	executable	
–  a.k.a	PIC	(position	independent	code)	
–  code	that	executes	properly	irrespective	of	its	absolute	address	
–  Used	extensively	in	shared	libraries	

•  Easy	to	find	a	location	where	to	load	them	without	overlapping	with	
other	modules	
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Load	Time	Relocatable	
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1	



Load	Time	Relocatable	
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note	the	0x0	here…		
the	actual	address	of	mylib_int	is	not	filled	in	

2	



Load	Time	Relocatable	
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Relocatable	table	present	in	the	executable	
that	contains	all	references	of	mylib_int	
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Load	Time	Relocatable	
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The	loader	fills	in	the	actual	address	of	mylib_int	
at	run	time.	
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Load	Time	Relocatable	
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Limitations	
	
•  Slow	load	time	since	executable	code	needs	to	be	modified	
	
•  Requires	a	writeable	code	segment,	which	could	pose	problems.	

	
•  Since	executable	code	of	each	program	needs	to	be	customized,	it	

would	prevent	sharing	of	code	sections	



PIC	Internals	
•  An	additional	level	of	indirection	for	all	global	data	and	

function	references	
•  Uses	a	lot	of	relative	addressing	schemes	and	a	global	offset	

table	(GOT)	
•  For	relative	addressing,	

–  data	loads	and	stores	should	not	be	at	absolute	addresses	but	must	be	
relative	
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Details	about	PIC	and	GOT	taken	from	…	
http://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/	



Global	Offset	Table	(GOT)	
•  Table	at	a	fixed	(known)	location	in	memory	

space	and	known	to	the	linker	
•  Has	the	location	of	the	absolute	address	of	

variables	and	functions	
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Without	GOT	

With	GOT	



Enforcing	Relative	Addressing	
(example)	
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With	load	time	relocatable	

With	PIC	



Enforcing	Relative	Addressing	
(example)	
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With	load	time	relocatable	

With	PIC	

Get	address	of	next	instruction	
to	achieve	relativeness	

Index	into	GOT	and	get	the		
actual	address	of	mylib_int	into	
eax	

Now	work	with	the	actual		
address.	



Advantage	of	the	GOT	
•  With	load	time	relocatable	code,	every	variable	reference	would	need	to	

be	changed	
–  Requires	writeable	code	segments	
–  Huge	overheads	during	load	time	
–  Code	pages	cannot	be	shared	

•  With	GOT,	the	GOT	table	needs	to	be	constructed	just	once	during	the	
execution	
–  GOT	is	in	the	data	segment,	which	is	writeable	
–  Data	pages	are	not	shared	anyway	
–  Drawback	:	runtime	overheads	due	to	multiple	loads	
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An	Example	of	working	with	GOT	
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$gcc	–m32	–shared	–fpic	–S	got.c	

Besides	a.out,	this	compilation	also	generates	got.s	
The	assembly	code	for	the	program	
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Data	section	

Text	section	

Fills	%ecx	with	the	eip	of	the	next	
instruction.		
Why	do	we	need	this	indirect	way	of	doing	this?	
In	this	case	what	will	%ecx	contain?	

The	macro	for	the	GOT	is	known	by	the	linker.	
%ecx	will	now	contain	the	offset	to	GOT	

Load	the	absolute	address	of	myglob	from	the	
GOT	into	%eax	



More	
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offset	of	myglob	
in	GOT	

GOT	it!		



Deep	Within	the	Kernel		
(randomizing	the	data	section)	

85	

loading	the	executable	

Check	if	randomize_va_space	
is	>	1	(it	can	be	1	or	2)	

Compute	the	end	of	the	data	
segment	(m->brk	+	0x20)		

Finally	Randomize	



Function	Calls	in	PIC	
•  Theoretically	could	be	done	similar	with	the	data…	

–  call	instruction	gets	location	from	GOT	entry	that	is	filled	in	during	
load	time	(this	process	is	called	binding)	

–  In	practice,	this	is	time	consuming.	Much	more	functions	than	global	
variables.	Most	functions	in	libraries	are	unused	

•  Lazy	binding	scheme	
–  Delay	binding	till	invocation	of	the	function	
–  Uses	a	double	indirection	–	PLT	–	procedure	linkage	table	in	addition	

to	GOT	
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The	PLT	
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1	

•  Instead	of	directly	calling	func,	invoke	an	offset	in	the	
PLT	instead.	

•  PLT	is	part	of	the	executable	text	section,	and	
consists	of	one	entry	for	each	external	function	the	
shared	library	calls.	

•  Each	PLT	entry	has		
	a	jump	location	to	a	specific	GOT	entry	
Preparation	of	arguments	for	a	‘resolver’		
Call	to	resolver	function		



First	Invocation	of	Func	

First	Invocation	of	fun	
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1	

2	

(steps	2	and	3)	
On	first	invocation	of	func,	PLT[n]	
jumps	to	GOT[n],		which	simply	jumps	
back	to	PLT[n]	
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First	Invocation	of	Func	
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1	

2	

(step	4).	Invoke	resolver,	which	resolves	
the	actual	of	func,		
places	this	actual	address	into	GOT	
and	then	invokes	func	
	
The	arguments	passed	to	resolver,	that	
helps	to	do	symbol	resolution	
	
Note	that	the	contents	of	GOT	is	now	
changed	to	point	to	the	actual	address	
of	func	

3	4	



Example	of	PLT	
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Compiler	converts	the	call	to	set_mylib_int	
into	set_mylib_int@plt	



Example	of	PLT	
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ebx	points	to	the	GOT	table	
ebx	+	0x10	is	the	offset	
corresponding	
to	set_mylib_int	

Offset	of	set_mylib_int	in	the	
GOT	(+0x10).	
It	contains	the	address	of	the	
next	instruction	(ie.	0x3c2)	



Example	of	PLT	
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Push	arguments	for	the	
resolver.	

Jump	to	the	first	entry	of	the	PLT	
Ie.	PLT[0]	

Jump	to	the	resolver,	which	
resolves	the	actual	address	
of	set_mylib_int	and	fills	it	
into	the	GOT	



Subsequent	invocations	of	Func	
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1	

2	

3	



Advantages	

•  Functions	are	relocatable,	therefore	good	for	ASLR	
•  Functions	resolved	only	on	need,	therefore	saves	
time	during	the	load	phase	
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Bypassing	ASLR	

•  Brute	force	
•  Return-to-PLT	
•  Overwriting	the	GOT	
•  Timing	Attacks	
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Safer	Programming	Languages,	
and	Compiler	Techniques	
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Other Precautions for buffer overflows 

•  Enforce memory safety in programming language 
–  Example java, C# (slow and not feasible for system programming) 

•  Cannot replace C and C++.  
(Too much software already developed in C / C++) 

 

–  Newer languages like Rust seem promising 
 

•  Use securer libraries. For example C11 annex K, gets_s, strcpy_s, 
strncpy_s, etc. 

   (_s is for secure) 
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Compile Bounds Checking 
•  Check accesses to each buffer so that it cannot be beyond the 

bounds 
•  In C and C++, bound checking performed at pointer calculation time 

or dereference time. 
•  Requires run-time bound information for each allocated block. 
•  Two methodologies 

–  Object based techniques 
–  Pointer based techniques   
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Softbound	:	Highly	Compatible	and	Complete	Spatial	Memory	Safety	for	C	
Santosh	Nagarakatte,	Jianzhou	Zhao,	Milo	M.	K.	Martin,	and	Steve	Zdancewic	



Softbound	
•  Every	pointer	in	the	program	is	associated	with	a	base	and	bound	
•  Before	every	pointer	dereference	to	verify	to	verify	if	the	dereference	is	

legally	permitted	

These	checks	are	automatically	inserted	at	compile	time	for	all	pointer	
variables.	For	non-pointers,	this	check	is	not	required.	
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Softbound	–	more	details	
•  pointer	arithmetic	and	assignment	

The	new	pointer	inherits	the	base	and	bound	of	the	original	
pointer	

	
	
	
	
				No	specific	checks	are	required,	until	dereferencing	is	done	
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Storing	Metadata	
•  Table	maintained	for	metadata	
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Softbound	–	more	details	
•  Pointers	passed	to	functions	

–  If	pointers	are	passed	by	the	stack	
no	issues.	The	compiler	can	put	information	related	to	metadata	onto	
the	stack	

–  If	pointers	passed	by	registers.	
			Compiler	modifies	every	function	declaration	to					
			add	more	arguments	related	to	metadata		
			For	each	function	parameter	that	is	a	pointer,	the	corresponding	base				
			and	bound	values	are	also	sent	to	the	function	
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