Polylog Thresholds are computable in AC⁰

D.Vamsi Krishna CS09B006

AC⁰

- Consists of all families of circuits of depth O(1) and polynomial size, with unlimited-fanin AND gates and OR gates. (We allow NOT gates only at the inputs).
- Given n bits,

Th_rⁿ($x_1, x_2, ..., x_n$) = 1 if at least r bits of n bits are 1 = 0 otherwise.

• $Th_r^n(x_1, x_2, ..., x_n)$, when r = O(1) is in AC^0 .

- Th_rⁿ(x₁,x₂,...,x_n), where r = O(log(n)) has no obvious AC^0 circuit.
- Can we some how reduce the problem ?

Idea

- The idea is to hash the input bits which are 1 without collisons on to a set of size
 t (= 2.log²(n)).
- Can we can do this (Hashing without collisons) when number of 1's in input bits are atmost log(n)? (Relaxing the above condition).
- This is sufficient in our case as we have to check only whether atleast log(n) input bits are 1.

Idea

- The task that remains is, to find a AC^0 circuit for deciding a log(n) threshold out of $t(=2.log^2(n))$ bits.
- $Th_{log(n)}^{t}(z_{1}, z_{2}, ..., z_{t})$ = $\neg COMP(log(n), LogltAdd(w_{1}, w_{2}, ..., w_{log(n)}))$
- $w_i = Bcount(z_{1+(i-1).2log(n)}, z_{2+(i-1).2log(n)},, z_{i.2log(n)})$
- Each w_i depends on log(n) bits and hence in AC^0 .
- COMP, LogltAdd are in AC⁰.

• Given log(n), n bit numbers, can we get a AC⁰ circuit for generating the sum?

- Given log(n), n bit numbers, can we get a AC⁰ circuit for generating the sum?
- A truth table for log(n) bits would have $2^{log(n)}$ (= n) rows with loglog(n) output bits.
- Each of loglog(n) bits can be realized by an AC⁰ circuit of depth 2 with o(n) gates.

- Given log(n), n bit numbers, can we get a AC⁰ circuit for generating the sum?
- A truth table for log(n) bits would have $2^{log(n)}$ (= n) rows with loglog(n) output bits.
- Each of loglog(n) bits can be realized by an AC⁰ circuit of depth 2 with o(n) gates.
- How to add the obtained n loglog(n) bits ?

Take the diagonals and lay out them horizontally.

- Take the diagonals and lay out them horizontally.
- Our problem now reduces to adding loglog(n),
 n-bit numbers.

- Take the diagonals and lay out them horizontally.
- Our problem now reduces to adding loglog(n),
 n-bit numbers.
- Recursion !
- Close recursion by brute force.
- Take log(n)/loglog(n) columns .

- The positioning is such that the carry for a block fully overlaps with the sum of the next block.
- Now we have to add these two set of numbers which can be done in AC⁰.

- We can get a AC⁰ circuit using a hashing family H, which is as follows:
 - Pick any prime number 'p' in the range n,....,2n (such a prime must exist ?).

- We can get a AC⁰ circuit using a hashing family H, which is as follows:
 - Pick any prime number 'p' in the range n,...,2n (such a prime must exist - Bertrand Postulate).

- We can get a AC⁰ circuit using a hashing family H, which is as follows:
 - Pick any prime number 'p' in the range n,...,2n (such a prime must exist - Bertrand Postulate).
 - Then the functions h_{α} for each $\alpha \in [p-1]$, where $h_{\alpha}(u)=(\alpha \cdot u \bmod p) \bmod t$, $t \in N$.
 - For Log Threshold $t = 2\log^2 n$ gives us a AC^0 circuit.

Hash Family

• The hash family H ensures us for some input x with atmost log(n) ones, there exists a h_{α} which doesn't witnesses a collison of 1s.

Proof:

• Assume the contrary that for some input x with atmost $\log(n)$ ones, every h_{α} witnesses a collison of 1s. Without the loss of generality, assume that x has exactly $\log(n)$ ones.

Proof Continued...

- Let the input bits are indexed by the set [n] ={1,2,...,n}.
 W={(α,u,v) | α ∈[p-1] ,u,v ∈ S , h_α(u)=h_α(v)}.
 S ⊆ [n] be the set of positions where the input bits are 1.
- Clearly W has at least one triple for each α , $|W| \ge p-1$.
- Consider any pair of distinct elements $u,v \in S$.

Proof Continued...

- For a collision to occur, we should have $(\alpha .u \mod p) = (\alpha .v \mod p) \pmod{t}.$ $=> (\alpha .u \mod p) (\alpha .v \mod p) = q.t \qquad \text{for some}$ $q \in \{-Floor((p-1)/t),...,0,...,Floor((p-1)/t)\}.$
- As p is prime there are atmost 2.Floor((p-1)/t) -1 bad α 's for a fixed pair.
- $|W| \le (\# \text{ of pairs } u, v \in S)$. $(\# \text{ of bad } \alpha \text{ 's for } u, v)$ $\le \log(n)C_2$. 2.Floor((p-1)/t) -1

Proof Continued...

• Using $t = 2 \log^2(n)$ we get $p-1 \le |W| \le (p-1)/2$ that is $(p-1) \le (p-1)/2$.

- A contradiction !
- So our assumption is false proving our claim.

Some Definitions

- For $\alpha \in [p-1]$, $j \in T$, $i \in [n]$ $B_{\alpha,j,i} = 1$ if $i \in [n]$ is mapped by h_{α} to j. 0 otherwise.
- Clearly each of $B_{\alpha,j,i}$ is independent of x and depends only on α,j,i and hence can be hardwired.
- For any input x ,
 D_{α,j}(x) = 1 if there is a collison of 1's form input x into position j.
 = 0 other wise .

Some Definitions

$$C_{\alpha}(x) = 1$$
 if h_{α} perfectly hashes S
= 0 otherwise.

One can see that

$$\mathbf{C}_{\alpha}(\mathbf{x}) = \bigwedge_{j=1}^{t} \mathbf{D}_{\alpha,j}(\mathbf{x}).$$

$$D_{\alpha,j}(x) = Th_2^n(x_1 \wedge B_{\alpha,j,1}, x_2 \wedge B_{\alpha,j,2}, \dots, x_n \wedge B_{\alpha,j,n})$$

• Clearly, these all are in AC^0 .

Final Circuit

$$\begin{bmatrix} \bigwedge_{\alpha \in [p-1]} \neg C_{\alpha} \end{bmatrix} V$$

$$\begin{bmatrix} \bigvee_{\alpha \in [p-1]} \left(C_{\alpha} \wedge Th^{t}_{\log(n)}(z_{1,\alpha}, z_{2,\alpha},, z_{t,\alpha}) \right) \end{bmatrix} .$$

Conclusion

• The idea used here can be extended to prove that polylog thresholds are in AC⁰.

Thank You