
IITM-CS6840: Advanced Complexity Theory Feb 07, 2012

Lecture 18 : Toda’s Theorem

Lecturer: Jayalal Sarma M.N. Scribe: Sunil K S.

Theme: Structure of Reduction in Counting world
Lecture Plan:In this lecture we will be concluding the lectures on the theme of
contrasting the power of counting to that of alternations. Today we will be proving the
interesting result that PH ⊆ P#P. To do this, first using the Valiant-Vazirani lemma we
will show that PH ⊆ BP(⊕P).

1 Valiant-Vazirani Lemma

We have already saw Valiant-Vazirani theorem which stated that :

Lemma 1. Valiant-Vazirani Theorem: There exists a probabilistic polynomial-time algo-
rthm f such that for every n-variable boolean formula ϕ

ϕ ∈ SAT ⇒ Pr[f(χ) ∈ USAT] ≥ 1

8n
ϕ /∈ SAT ⇒ Pr[f(χ) ∈ SAT] = 0

But to prove that PH ⊆ BP(⊕P) we will need amplified version of this lemma.

Lemma 2. Valiant-Vazirani lemma (Amplified version): There exists a randomized algo-
rithm which produce ϕ from a given boolean formula φ such that for a polynomila q(n):

x ∈ L⇒ Pr[ϕ ∈ ⊕SAT] ≥
(

1− 1

2q(n)

)
x /∈ L⇒ Pr[ϕ /∈ ⊕SAT] = 1

In the above construction, ϕ = φ ∧ h, where h is a hash function. Here ϕ is independent
on φ or its structure. To find h, chosen from a good hash family, we just need to know the
domain and range, which is 2n. Here h depends only on n. Let τ(x, y) denote the choice of h
from the hash family based on the random string y. Now we modify the lemma statements
given above as:

(∃φ)φ ∈ SAT ⇒ Pry[⊕xφ ∧ τ(x, y)] ≥
(

1− 1

2q(n)

)
(¬∃φ)φ /∈ SAT ⇒ Pry[⊕xφ ∧ τ(x, y)] = 1

18-1

where φx represents the parity of number of satisfying assignments.

Observations: Existing of a satisfying assignment for φ is equivalent to saying φ ∈ SAT .
Here we can talk about any φ. That is φ can even have ∃ or ∀ quantifiers. This gives a
better handle since construction is completely oblivious of what φ is.

Claim: PH ⊆ BP(⊕P)

Proof. Proof by induction on the number of alterations, k.
Basis: for k = 0, we already have the result NP ⊆ BP(⊕P).
Assume the result for k. ie; Σk or SATk ∈ BP(⊕P).
We need to prove that SATk+1 ∈ BP(⊕P).

φ ∈ SATk ⇒ Pr[⊕zφ ∧ τ(x, z)] ≥ (1− 1

2q(n)
)

φ /∈ SATk ⇒ Pr[⊕zφ ∧ τ(x, z)] = 0

Now, any φ′ ∈ SATk+1 can be written as φ′ = ∃σ where σ ∈ SATk

φ′ ∈ SATk+1 ⇒ ∃σ ∈ SATk with σ ∈ Πk

Let σ′ = ∃(¬ϕ) where σ = ¬ϕ

¬(∀ϕ)⇒ ∃σ ⇒ Pr[σ′ ∈ ⊕SAT] ≥ (1− 1

2q(n)
)

∀ϕ⇒ ¬∃σ ⇒ Pr[σ′ /∈ ⊕SAT] ≥ (1− 1

2q(n)
)

∀ϕ⇒ Pr[σ′′ ∈ ⊕SAT] ≥ (1− 1

2q(n)
)

¬∀ϕ⇒ Pr[σ′′ /∈ ⊕SAT] ≥ 1

ϕ→ ϕ ∧ (h(y) = 0k)→ ϕ ∧ (h(y) = 0k1 ∧ h(x) = 0k2)

φ = ∃∀ϕ

2 Toda’s Theorem: PH ⊆ P#P

Any problem in PH can be solved by a P machine by making queries to a #P machine.

18-2

Lemma 3. If A ∈ ⊕P then ∃B such that for any polynomial q and input x of length n,

x ∈ A ⇒ (#(x, y) ∈ B) ≡ −1 mod 2q(n)

x /∈ A ⇒ (#(x, y) ∈ B) ≡ 0 mod 2q(n)

Now we can state the lemma as, Let A ∈ ⊕P. Then for any polynomial q, there exists a
polynomial-time NTM M such that for any input x of length n,

x ∈ A ⇒ (χM (x)) ≡ −1 mod 2q(n)

x /∈ A ⇒ (χM (x)) ≡ 0 mod 2q(n)

Here χM (x) denotes the number of accepting computations of M on x.

Proof. Let M1 be a polynomial time NTM such that

χM1 ≡ 1 mod 2 if x ∈ A

χM1 ≡ 0 mod 2 if x /∈ A

In other words,
x ∈ A ⇒ (#accM (x)) is odd

x /∈ A ⇒ (#accM (x)) is even

Define another polynomial time NTM M2 that repeats M1 on x a number of times such
that

x ∈ A ⇒ (#accM2(x)) is odd

x /∈ A ⇒ (#accM2(x)) is even

Note: Given two NDTMs M1 and M2, we know how to get an M3 with:

• #accM3(x) = #accM1(x) + #accM2(x): By running M1 and M2 in parallel.

• #accM3(x) = #accM1(x)×#accM2(x): By rnning M1 and M2 one after other.

Let f(x, i) = χM2(< x, i >). It if clear that f satisfies the recurrence relation given below:

f(x, i+ 1) = 3f(x, i)4 + 4f(x, i)3, i ≥ 0 (1)

From equation 1
f(x, 0) is even ⇒ f(x, i) ≡ 0 mod 22

i

f(x, 0) is odd ⇒ f(x, i) ≡ −1 mod 22
i

18-3

Now from the above analysis,

x ∈ A ⇒ (χM (x) ≡ −1 mod 22
log q(n) ≡ −1 mod 2q(n)

x /∈ A ⇒ (χM (x) ≡ 0 mod 22
log q(n) ≡ 0 mod 2q(n)

Theorem 4. BP(⊕P) ⊆ P#P

Proof. L ∈ BP(⊕P) means there exists a set A ∈ ⊕P and a polynomial p such that for all
x,

x ∈ L⇒ Pry[(x, y) ∈ A] ≥ 2

3

x /∈ L⇒ Pry[(x, y) ∈ A] ≤ 1

3

where y ranges over all strings of length p(|x|).

By lemma 3, if A ∈ ⊕P, there exists a polynomial-time NTM M such that for all (x, y),
with |x| = n and |y| = p(n)

χM (< x, y >) ≡ −1 mod 2p(n), if < x, y >∈ A

χM (< x, y >) ≡ 0 mod 2p(n), if < x, y >/∈ A

Let g(x) and h(x) are two functions defined as,

g(x) = |{y : |y| = p(|x|), (x, y) ∈ A}|
h(x) =

∑
|y|=p(|x|)

χM (< x, y >)

Then for any x of length n,

h(x) =
∑

<x,y>∈A
χM (< x, y >) +

∑
(<x,y>/∈A)

χM (< x, y >)

= (
∑

<x,y>∈A
(−1) +

∑
(<x,y>/∈A)

0) mod 2q(n)

≡ (g(x).(−1) + (2p(n) − g(x)).0) mod 2p(n)

≡ (−g(x)) mod 2p(n)

Construct a machine N that has h(x) accepting path (Just guess a y and run N). Now
make a query to a #P machine to compute h(x). By having q(n) sufficiently large, ie.,
2q(n) > 2p(n) we can compute g(x) = (2p(n) − h(x)).

18-4

We know x ∈ L if and only if g(x) > 2p(n)−1. Since g(x) can be computed from h(x) and
p(n) it is clear that we can decide whether x ∈ L from h(x). The function h is in #P,
we can define an NTM M1 that on input x first nondeterministically guesses a string y of
length p(|x|) and then simulate M on < x, y >. Hence, L ∈ P#P.

18-5

