IITM-CS6840: Advanced Complexity Theory

Lecture 18 : Toda's Theorem

Lecturer: Jayalal Sarma M.N.

Scribe: Sunil K S.

Feb 07, 2012

THEME: Structure of Reduction in Counting world

LECTURE PLAN:In this lecture we will be concluding the lectures on the theme of contrasting the power of counting to that of alternations. Today we will be proving the interesting result that $PH \subseteq P^{\#P}$. To do this, first using the Valiant-Vazirani lemma we will show that $PH \subseteq BP(\oplus P)$.

1 Valiant-Vazirani Lemma

We have already saw Valiant-Vazirani theorem which stated that :

Lemma 1. Valiant-Vazirani Theorem: There exists a probabilistic polynomial-time algorthm f such that for every n-variable boolean formula φ

$$\varphi \in SAT \Rightarrow Pr[f(\chi) \in USAT] \geq \frac{1}{8n}$$
$$\varphi \notin SAT \Rightarrow Pr[f(\chi) \in SAT] = 0$$

But to prove that $\mathsf{PH} \subseteq \mathsf{BP}(\oplus \mathsf{P})$ we will need amplified version of this lemma.

Lemma 2. Valiant-Vazirani lemma (Amplified version): There exists a randomized algorithm which produce φ from a given boolean formula ϕ such that for a polynomila q(n):

$$\begin{aligned} x \in L \Rightarrow \Pr[\varphi \in \oplus SAT] &\geq \left(1 - \frac{1}{2^{q(n)}}\right) \\ x \notin L \Rightarrow \Pr[\varphi \notin \oplus SAT] &= 1 \end{aligned}$$

In the above construction, $\varphi = \phi \wedge h$, where *h* is a hash function. Here φ is independent on ϕ or its structure. To find *h*, chosen from a good hash family, we just need to know the domain and range, which is 2^n . Here *h* depends only on *n*. Let $\tau(x, y)$ denote the choice of *h* from the hash family based on the random string *y*. Now we modify the lemma statements given above as:

$$\begin{array}{lll} (\exists \phi)\phi \in SAT \Rightarrow Pr_y[\oplus_x \phi \wedge \tau(x,y)] & \geq & \left(1 - \frac{1}{2^{q(n)}}\right) \\ (\neg \exists \phi)\phi \notin SAT \Rightarrow Pr_y[\oplus_x \phi \wedge \tau(x,y)] & = & 1 \end{array}$$

where ϕ_x represents the parity of number of satisfying assignments.

Observations: Existing of a satisfying assignment for ϕ is equivalent to saying $\phi \in SAT$. Here we can talk about any ϕ . That is ϕ can even have \exists or \forall quantifiers. This gives a better handle since construction is completely oblivious of what ϕ is.

Claim: $\mathsf{PH} \subseteq \mathsf{BP}(\oplus \mathsf{P})$

Proof. Proof by induction on the number of alterations, k. Basis: for k = 0, we already have the result $\mathsf{NP} \subseteq \mathsf{BP}(\oplus \mathsf{P})$. Assume the result for k. ie; Σ_k or $SAT_k \in \mathsf{BP}(\oplus \mathsf{P})$. We need to prove that $SAT_{k+1} \in \mathsf{BP}(\oplus \mathsf{P})$.

$$\phi \in SAT_k \Rightarrow Pr[\oplus_z \phi \land \tau(x, z)] \ge (1 - \frac{1}{2^{q(n)}})$$
$$\phi \notin SAT_k \Rightarrow Pr[\oplus_z \phi \land \tau(x, z)] = 0$$

Now, any $\phi' \in SAT_{k+1}$ can be written as $\phi' = \exists \sigma$ where $\sigma \in SAT_k$

 $\phi' \in SAT_{k+1} \Rightarrow \exists \sigma \in SAT_k \text{ with } \sigma \in \Pi_k$

Let $\sigma' = \exists (\neg \varphi)$ where $\sigma = \neg \varphi$

$$\neg(\forall \varphi) \Rightarrow \exists \sigma \Rightarrow \Pr[\sigma' \in \oplus SAT] \ge (1 - \frac{1}{2^{q(n)}})$$
$$\forall \varphi \Rightarrow \neg \exists \sigma \Rightarrow \Pr[\sigma' \notin \oplus SAT] \ge (1 - \frac{1}{2^{q(n)}})$$

$$\begin{aligned} \forall \varphi \Rightarrow \Pr[\sigma'' \in \oplus SAT] \geq (1 - \frac{1}{2^{q(n)}}) \\ \neg \forall \varphi \Rightarrow \Pr[\sigma'' \notin \oplus SAT] \geq 1 \\ \varphi \to \varphi \wedge (h(y) = 0^k) \to \varphi \wedge (h(y) = 0^{k_1} \wedge h(x) = 0^{k_2}) \\ \phi = \exists \forall \varphi \end{aligned}$$

2 Toda's Theorem: $\mathsf{PH} \subseteq \mathsf{P}^{\#\mathsf{P}}$

Any problem in PH can be solved by a P machine by making queries to a #P machine.

Lemma 3. If $A \in \bigoplus P$ then $\exists B$ such that for any polynomial q and input x of length n,

$$x \in \mathcal{A} \Rightarrow (\#(x, y) \in B) \equiv -1 \mod 2^{q(n)}$$
$$x \notin \mathcal{A} \Rightarrow (\#(x, y) \in B) \equiv 0 \mod 2^{q(n)}$$

Now we can state the lemma as, Let $\mathcal{A} \in \oplus \mathsf{P}$. Then for any polynomial q, there exists a polynomial-time NTM M such that for any input x of length n,

$$x \in \mathcal{A} \Rightarrow (\chi_M(x)) \equiv -1 \mod 2^{q(n)}$$

 $x \notin \mathcal{A} \Rightarrow (\chi_M(x)) \equiv 0 \mod 2^{q(n)}$

Here $\chi_M(x)$ denotes the number of accepting computations of M on x.

Proof. Let M_1 be a polynomial time NTM such that

$$\chi_{M_1} \equiv 1 \mod 2 \text{ if } x \in \mathcal{A}$$

 $\chi_{M_1} \equiv 0 \mod 2 \text{ if } x \notin \mathcal{A}$

In other words,

$$x \in \mathcal{A} \Rightarrow (\#acc_M(x)) \text{ is odd}$$
$$x \notin \mathcal{A} \Rightarrow (\#acc_M(x)) \text{ is even}$$

Define another polynomial time NTM M_2 that repeats M_1 on x a number of times such that

$$x \in \mathcal{A} \Rightarrow (\#acc_{M_2}(x))$$
 is odd
 $x \notin \mathcal{A} \Rightarrow (\#acc_{M_2}(x))$ is even

Note: Given two NDTMs M_1 and M_2 , we know how to get an M_3 with:

- $#acc_{M_3}(x) = #acc_{M_1}(x) + #acc_{M_2}(x)$: By running M_1 and M_2 in parallel.
- $\#acc_{M_3}(x) = \#acc_{M_1}(x) \times \#acc_{M_2}(x)$: By running M_1 and M_2 one after other.

Let $f(x,i) = \chi_{M_2}(\langle x,i \rangle)$. It if clear that f satisfies the recurrence relation given below:

$$f(x, i+1) = 3f(x, i)^4 + 4f(x, i)^3, i \ge 0$$
(1)

From equation 1

$$f(x,0)$$
 is even $\Rightarrow f(x,i) \equiv 0 \mod 2^{2^i}$
 $f(x,0)$ is odd $\Rightarrow f(x,i) \equiv -1 \mod 2^{2^i}$

Now from the above analysis,

$$x \in \mathcal{A} \Rightarrow (\chi_M(x) \equiv -1 \mod 2^{2^{\log q(n)}} \equiv -1 \mod 2^{q(n)}$$
$$x \notin \mathcal{A} \Rightarrow (\chi_M(x) \equiv 0 \mod 2^{2^{\log q(n)}} \equiv 0 \mod 2^{q(n)}$$

Theorem 4. $\mathsf{BP}(\oplus\mathsf{P}) \subseteq \mathsf{P}^{\#\mathsf{P}}$

Proof. $L \in \mathsf{BP}(\oplus\mathsf{P})$ means there exists a set $\mathcal{A} \in \oplus\mathsf{P}$ and a polynomial p such that for all x,

$$x \in L \Rightarrow Pr_y[(x, y) \in \mathcal{A}] \ge \frac{2}{3}$$
$$x \notin L \Rightarrow Pr_y[(x, y) \in \mathcal{A}] \le \frac{1}{3}$$

where y ranges over all strings of length p(|x|).

By lemma 3, if $\mathcal{A} \in \oplus \mathsf{P}$, there exists a polynomial-time NTM M such that for all (x, y), with |x| = n and |y| = p(n)

$$\chi_M(\langle x, y \rangle) \equiv -1 \mod 2^{p(n)}, \text{ if } \langle x, y \rangle \in \mathcal{A}$$
$$\chi_M(\langle x, y \rangle) \equiv 0 \mod 2^{p(n)}, \text{ if } \langle x, y \rangle \notin \mathcal{A}$$

Let g(x) and h(x) are two functions defined as,

$$g(x) = |\{y : |y| = p(|x|), (x, y) \in \mathcal{A}\}|$$
$$h(x) = \sum_{|y|=p(|x|)} \chi_M(\langle x, y \rangle)$$

Then for any x of length n,

$$h(x) = \sum_{\langle x,y \rangle \in \mathcal{A}} \chi_M(\langle x,y \rangle) + \sum_{(\langle x,y \rangle \notin \mathcal{A})} \chi_M(\langle x,y \rangle)$$

= $(\sum_{\langle x,y \rangle \in \mathcal{A}} (-1) + \sum_{(\langle x,y \rangle \notin \mathcal{A})} 0) \mod 2^{q(n)}$
= $(g(x).(-1) + (2^{p(n)} - g(x)).0) \mod 2^{p(n)}$
= $(-g(x)) \mod 2^{p(n)}$

Construct a machine N that has h(x) accepting path (Just guess a y and run N). Now make a query to a #P machine to compute h(x). By having q(n) sufficiently large, i.e., $2^{q(n)} > 2p(n)$ we can compute $g(x) = (2^{p(n)} - h(x))$.

We know $x \in L$ if and only if $g(x) > 2^{p(n)-1}$. Since g(x) can be computed from h(x) and p(n) it is clear that we can decide whether $x \in L$ from h(x). The function h is in #P, we can define an NTM M_1 that on input x first nondeterministically guesses a string y of length p(|x|) and then simulate M on $\langle x, y \rangle$. Hence, $L \in P^{\#P}$. \Box